
 

 

 

Volume 13, Issue 6, June 2024 

Impact Factor: 8.317 



International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE) 

                       | e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| www.ijareeie.com | Impact Factor: 8.317|| A Monthly Peer Reviewed & Referred Journal | 

||Volume 13, Issue 6, June 2024|| 

|DOI:10.15662/IJAREEIE.2024.1306009| 
 

IJAREEIE © 2024                                                     |    An ISO 9001:2008 Certified Journal |                                                   1728 

 

 

Modified TOSAM: Truncation and Rounding-
Based Scalable Approximate Multiplier for High-

Speed for Energy-Efficient Digital Signal 
Processing 

Advaiet B Mishra1, Dr Prabhat Sharma2 

PG Scholar, Dept of Electronics and Communication Engineering, OIST, Bhopal, MP, India1 

 HOD, Dept of Electronics and Communication Engineering, OIST, Bhopal, MP, India2 

 
ABSTRACT: The TOSAM method reduces the number of partial products by truncating each input process based on 
the leading unit position, resulting in an elastic approximate multiplier. This approach involves shifting, adding, and 
limiting multiplier operations of a given length, leading to significant improvements in energy efficiency and resource 
usage compared to traditional multipliers. The input process is rounded to the nearest value to enhance overall 
precision, and the multiplier can be scaled according to the truncated positions of the input operands. With lower 
precision in input operand width, the multiplier remains scalable, and further improvements are possible if design 
parameters such as area and power consumption decrease. The design parameters of the proposed approximate 
multiplier are compared with those of an accurate multiplier and other recently suggested approximate multipliers to 
evaluate performance. The results indicate that the proposed multiplier, with an absolute error ranging from 11% to 
0.3%, significantly reduces time delays, area, and energy usage by 90%, 98%, and 41%, respectively. Various 
approximate multipliers often exhibit similar improvements in area and energy usage. The proposed multiplier features 
a Gaussian error distribution with a mean value close to 0, making it suitable for tasks such as writing, sharpening, and 
organizing JPEG encoders. Tests demonstrate a minor improvement in output quality. Additionally, a configurable 
TOSAM accuracy feature allows for adjusting energy usage based on the required precision during propagation. 
  
KEYWORDS: Configurable Accuracy, Approximate Multiplier, Area-Efficient, Low-Energy, Scalable, Truncation-
Based. 

 

I.INTRODUCTION 

Power utilization is a key architectural requirement in digital network design. Calculation approximation (CA) is one 
strategy to enhance energy efficiency. CA can be particularly useful in error-resilient applications, where exact 
outcomes are not always necessary. These applications include audio and image processing, machine learning, and data 
mining. In many signal processing tasks, arithmetic operations account for a significant portion of energy consumption, 
such as up to 75% in the fast Fourier transform system.Approximate multipliers are therefore well-suited for error-
tolerant signal processing systems. Typically, a multiplication cycle consists of three stages: generating partial products 
from input operations, reducing these partial products to two rows, and then using an adder to combine these rows. 
Strategies to improve this process involve generating partial products more efficiently or reducing the complexity of 
their addition, which can reduce delays and power consumption. 
 
One method to achieve this is through the use of approximate multipliers that employ truncation and rounding. In the 
proposed approach, inputs are truncated to a certain number of bits based on their leading bits. The error introduced by 
truncation is then mitigated by rounding, resulting in a more accurate approximation. This simplification leads to a 
smaller and more energy-efficient multiplier. 
 
The accuracy of this method is primarily determined by the truncation and rounding parameters, which do not 
significantly affect the input operand distance, thus ensuring scalability. The proposed multiplier has several key 
features: 
• Identifies leading multiplier positions and applies truncation and rounding to enhance accuracy. 
• Explores truncation (t) and rounding (h) parameters to balance accuracy, delay, and energy usage. 
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• Implements a hardware version of the approximate multiplier (TOSAM) for both signed and unsigned 
operations. 
• Evaluates the multiplier's specifications for image processing and other grading demands. 
 
The paper is organized as follows: Section II reviews previous research on approximate multipliers. Section III 
describes the architecture of the new approximate multiplier, and Section IV details its hardware implementation and 
error analysis. 

II.REVIEW OF LITERATURE SURVEY 

This section reviews various research efforts on designing approximate multipliers. In the dynamic segment (DSM) 
method, input operands are truncated to m bits based on the leading element, resulting in a fixed-width multiplication. 
This truncation method often produces outputs smaller than the actual values, leading to a negative mean relative error, 
which is undesirable for applications requiring high signal-to-noise ratios, like optical signal processing with Gaussian 
error distribution. 
 
In the complex DRUM structure, the least significant bit of the truncated input is set to "1" to bring the mean relative 
error to zero. The LETAM structure truncates input operands and ignores half of the partial products, reducing delays 
and power consumption compared to DSM and DRUM systems. RoBA multipliers round input operands to the nearest 
power of two, simplifying the multiplication, addition, and subtraction processes, thus enhancing energy efficiency and 
speed. 
 
Other methods have removed the least significant bits of partial products to increase multiplier speed and size. Partial 
products can be generated through logical AND operations or encoded in higher radixes. However, as radix decreases, 
the encoding complexity increases. Approximate encoders can generate partial products with this complexity. 
Approximate radix-4 booth multipliers, radix-9 multipliers, and partial product accumulation techniques have been 
explored. 
 
In some approaches, the most significant bits of the multiplier are encoded with radix-4 encoding, while the least 
significant bits use higher approximate radix encoding. Various estimated compressors, such as 4:2 and 5:3 
compressors, have been proposed to improve multiplier accuracy. A design algorithm for efficient approximate 
multipliers using these compressors has also been suggested. 
 
Other methods involve modifying the counting scheme to a logarithmic one, which increases multiplication speed. This 
method computes the logarithm of input operands, sums them, and performs an antilogarithm operation to obtain the 
final result. The accuracy of these multipliers depends on the precision of the logarithm and antilogarithm steps. 
Mitchell proposed a simple procedure for logarithmic and antilogarithmic computations, which has been the basis for 
subsequent logarithmic multiplier designs. 
 
This paper introduces a novel multiplier design that truncates and rounds the leading bits of input operands, applies 
certain adjustments, and performs small fixed-width multiplication operations to achieve the desired output. 

Fig. 1. Amount of YAPX according to the amount of Y for the case of S =4. 

III. PROPOSED APPROXIMATE MULTIPLIER 

A. TOSAM Each positive integer number (N) can be represented as 

 

where k denotes the position of its leading one bit and xi is the ith bit of N. By factoring 2k from (1), it is 
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rewritten as 

 
where X is a fractional number between 1.0 and 2.0. Based on (2), the result of multiplying A by B may be 

calculated as 

XA and XB widths are the same as A and B for the correct period and power usage amount of XA perXB. We 
propose that the average sum of this word be determined based on XA and XB fractional sections. They reflect 
the fraction of X in the remainder of this article, as Y is from 

For example, assume that X =(1.1101)2. In this case, Y =( 0.1101)2. To generate the approximate value of Y, 
we divide this range (0.0–1.0) into S equal segments where S is a power of two represented by 

where h denotes an arbitrary positive integer which is one of our design parameters. It is obvious that the 

length of each segment is equal to 1/S. We propose to generate the approximate value of Y as 

 

The estimated sums of Y for the situation in which S equals 4 are seen in Figure for a greater example. 1. In 
order to locate YAPX, only h most significant pieces of Y must be remembered. For eg, if S = 4(h = 2) is zero if 
there are two big bits of Y, it implies 0 is < 1/4. So, as YAPX, we chose 1/8 = (0.001)2. If two of the most 

significant Y pieces are "10," indicating 2/4 of a new Y < 3/4, YAPX is then approximated to 5/8=(0.101)2. In 
other words, YAPX 's meaning is obtained by actually splitting Y into h bits and adding a "1" bit on the right 
side. The range of YAPX thus corresponds to h+1 bits. (4), (3) shall be revised as 
 

Now, the approximate of (7) may be expressed as 
 

 
To improve the speed of calculation, we truncate YAand YB to t bits, where in the rest of this paper, we 

denote by (YA)tand (YB)t. Hence, we modify (8) as 
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where the width of (YA)APX ((YB)APX) is h+1 bits. To have a better understanding, the dot diagram of the 

proposed algorithm for the case where t = 7 and h = 3 compared to that of an exact 16-bit multiplier is 

depicted in Fig. 2. The green square shows the “1” bit in the term 1+(YA)t+(YB)t+ (YA)APX×(YB)APX. Orange 

circles denote partial products of (YA)APX×(YB)APX, whereas purple triangles show the bits of (YA)t and (YB)t. 

Gray circles and triangles are omitted and are not considered in the calculations. As shown in Fig. 2, in the 

exact 16-bit multiplier, the number of partial products is equal to 256, which must be summed to generate the 

final result while in the proposed method, only 31 of the partial products are kept (which amounts to ∼88% 

partial products reduction). This reduction rate will rise as the bit length of the multiplier input operands 

increases. As an example, the steps of multiplying A by B for the case of t = 7 and h = 3 are depicted in Fig. 3. 

In the rest of this paper, we denote our proposed structures by TOSAM (X, Y) where Xand Y correspond to h 

and t. The accuracy of the proposed approach depends on the values of the parameters t and h. Therefore, in 

the error analysis section (Section V), we will find a relationship between t and h parameters to achieve an 

almost high accuracy while having an acceptable speed and energy consumption. Finally, the proposed 

multiplication approach is feasible for the case of unsigned operands. To use it for signed multipliers, one 

may find the absolute value of the input operands, multiply them by the proposed algorithm, and fix the sign 

of the final result according to the sign of the input operands. Finding the exact absolute value of the input 

operands may degrade the speed of calculation and, hence, we produce it according to the method presented in 

[7]. 

 

Fig. 3. Numeric example of 16-bit TOSAM(3, 7) with A = 11761 and B=2482. The approximate result 

[(A× B)APX] is equal to 28 901 376 while the exact result [(A× B)Exact] is equal to 29 190 802. In this case, 

the absolute error is 289 426 which is about 0.99% of the exact output (the error is less than 1% in this case). 

Fig. 4. Block diagram of the proposed approximate signed multiplier. 
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IV.HARDWARE IMPLEMENTATION 

The block diagram of the proposed signed approximate multiplier is depicted in Fig. 4. First, the approximate 

absolute value of the input operands (|A|app,|B|app) is determined using the Approximate Absolute Unit, 

similar to the one exploited in [7]. In this unit, the bits of the input are inverted if the input is negative and they 

are not changed if the input is positive. |A|app and |B|app are injected to the Leading-One Detector Unit 

[25] and the positions of their leading one bits are found using 
 

 
where I can be either|A|app or|B|app. Only one bit of the signal K is “1” revealing the position of the input 

leading one bit. By using the KA and KB signals in a lookup table, kA and kB signals needed for (7) can be 

generated. The schematic of the Leading- OneDetector Unit for 8-bit input operandsis depicted in Fig. 5. For 

example, assume that |A|app = (011001)2, in this case KA = (010000)2 and kA =(100)2 =4. Signals |A|app, 

|B|app, KA, andKB are then applied to the Truncation Unit [25] to produce (YA)t and (YB)t. Assume that the 

input and output of this unit are I and (Y)t. In this case, the ith bit of the output can be generated using 

 

Fig. 5. Schematic of the Leading-One Detector Unit for 8-bit input operands. 

 
Signals (YA)t and (YB)t are then exerted to the Arithmetic Unit to calculate the term 1 + (YA)t + (YB)t + (YA)APX 

× (YB)APX. It should be noted that the h most significant bits of (YA)APX and (YB)APX are the same as the h 

most significant bits of (YA)t and (YB)t whose rightmost bits are always “1.” Hence, there is no need to add 

extra hardware to generate (YA)APX and (YB)B signals which are produced by simple wiring. In the Shift Unit, 

the output of the Arithmetic Unit is shifted to left by kA+kB to produce the term 2kA+kB  ×(1+(YA)t  +  

(YB)t  +(YA)APX ×(YB)APX) [see (9)]. In the Sign and Zero Detector Unit, the output's sign is determined by 

the sign of the multiplier input operands, and the output is set to zero if at least one of the inputs is zero. For 

unsigned multipliers, the Approximate Absolute Unit should be omitted, and the Sign and Zero Detector Unit 

should be replaced with a Zero Detector Unit. 

 

TOSAM can be implemented in an accuracy-configurable structure. To achieve this, all units of TOSAM 

should be designed to accommodate the largest desired values of h and t, allowing the design to function in all 

operation modes. We propose a configurable TOSAM structure with three different operating modes: T2, T6, 

and T9, corresponding to TOSAM(0, 2), TOSAM(2, 6), and TOSAM(5, 9), respectively. The Truncation and 

Shift Units of the configurable TOSAM should be designed for the maximum values of t and h (h = 5 and t = 9 

in this case). 

 

In the Arithmetic Unit, some adders and logical AND gates should be power-gated based on the operating 

mode to enhance power efficiency. The reduction levels of the partial products based on the operating modes 

are illustrated in Fig. 6. In the final level, a fast 9-bit adder is used, and to decrease its switching activity, some 
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inputs are set to “0” using a transmission gate (TG), depending on the operating mode. 

 

In T2 mode, only the purple partial products are accumulated, only the purple adders are active (not power-

gated), and all inputs of the 9-bit adder are set to “0.” Additionally, the 10 least significant bits of the result are 

set to “0.”. 
 

Fig. 6. Reduction levels of accuracy configurable TOSAM with three different operating modes. 

 

TGs and purple stars are used to generate the four most significant bits of the output. In T6 mode, only the green and 
purple partial products are generated and summed to form the final output, with the orange adders power-gated and 
their inputs set to “0.” Additionally, the two orange circles in the eighth column of LEVEL1 should be set to “0” by 
TGs in T6 mode. Here, the six least significant bits of the result are set to “0,” the green stars pass through TGs to 
produce four intermediate bits, and the 9-bit adder generates the four most significant bits of the result. 
 
In T9 mode, all components are active. The orange stars pass through the TGs to generate the five least significant bits 
of the result, with the remaining bits produced by the 9-bit adder. The least significant bits of (Y A)APX and (Y 
B)APX, which depend on the operating mode, should be rounded (set to “1”). This is achieved by performing a logical 
OR operation on the corresponding bit and the operating mode. For instance, when the T6 signal is “1,” the logical OR 
operation sets the corresponding bit of (Y A)APX and (Y B)APX to “1.”. 
 

V. CONCLUSION 
 

Table: Comparisons between TOSAM and Proposed Modified TOSAM 
TITLE DELAY(ns) 

Previous work (TOSAM) 23.363 

Proposed work (Modified  TOSAM with energy 

efficient high speed approximate multiplier) 

22.389 

 

In this paper, we proposed a low-energy and area-efficient approximate multiplier. The input operations were 

truncated to two different lengths, t and h, and then rounded to the nearest odd numbers to minimize truncation 

errors. Compared to a standard Wallace Multiplier, the proposed 32-bit multiplier improved energy efficiency 

by an average of 95% and reduced area usage by 85%. However, the multiplication delay and power 

consumption increased by 4% to 41% and 89% to 97%, respectively. 
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The enhancements in speed, size, and energy efficiency of the new multiplier became more pronounced as the 

multiplier size increased, thanks to its simple and scalable calculation core. The high accuracy of the proposed 

multiplier makes it a strong candidate for applications such as image analysis and classification. 
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