

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 401

Recurrent Neural Networks
Hardware Implementation on FPGA

AC Xian Ming, Berin Martini and Eugenio Culurciello

Department of Electrical and Computer Engineering Purdue University, West Lafayette, IN 47907, USA

ABSTRACT: Recurrent Neural Networks (RNNs) have the ability to retain memory and learn data sequences. Due to
the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware. CPUs
do not currently offer large parallelism, while GPUs offer limited parallelism due to sequential components of RNN
models. In this paper we present a hardware implementation of Long-Short Term Memory (LSTM) recurrent network
on the programmable logic Zynq 7020 FPGA from Xilinx. We implemented a RNN with 2 layers and 128 hidden units
in hardware and it has been tested using a character level language model. The implementation is more than 21 faster
than the ARM CPU embedded on the Zynq 7020 FPGA. This work can potentially evolve to a RNN co-processor for
future mobile devices.

KEYWORDS: Cognitive Radio, Spectrum Sensing, Efficient Communication, System Security.

I. INTRODUCTION

One of the The phenomena of the universe may be represented with different dimensions and variables, but one
dimension is always present in all of the universe: time. Things that happen now may be caused by what has happened
in the past, and it may not make sense to analyze the present without accounting for the past.
A Neural Network, or NN, is a generic architecture used in machine learning that can map different types of
information. Given an input, a trained NN can give the desired output. However, NNs cannot learn from sequences.
Recurrent Neural Networks, or RNNs, address this issue by adding feed-back to standard neural networks. Thus,
previous outputs are taken into account for the prediction of the next output. RNNs has been shown to be successful in
various applications, such as speech recognition [1], machine translation [2] and scene analysis [3]. A combination of a
Convolutional Neural Network (CNN) with a RNN can lead to fascinating results such as image caption generation [4-
6].
Due to the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware.
General purposes CPUs do not currently offer large parallelism, while small RNN models do not get full benefit from
GPUs. Thus, an optimized hardware architecture is necessary for executing RNNs models on embedded systems.
Long Short Term Memory, or LSTM [7,8] is a specific RNN architecture that implements a learned memory controller
for avoiding vanishing or exploding gradients [9].The purpose of this paper is to present a LSTM hardware module
implemented on the Zynq 7020 FPGA from Xilinx. Figure 1 shows an overview of the system. As proof of concept, the
hardware was tested with a character level language model made with 2 LSTM layers and 128 hidden units. The next
following sections present the background for LSTM, related work, implementation details of the hardware and driver
software, the experimental setup and the obtained results.

Figure 1: The LSTM hardware was implemented using a Zed board Zynq ZC7020.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 402

II. LSTM BACKGROUND

Cognitive One main feature of RNNs is that they can learn from previous information. But the question is how far
should a model remember, and what to remember. Standard RNN can retain and use recent past information[8]. But it
fails to learn long-term dependencies. Vanilla RNNs are hard to train for long sequences due to vanishing or exploding
gradients[9].This is where LSTM comes into play. LSTM is an RNN architecture that adds memory controllers to
decide when to remember, forget and output. This makes the optimization procedure much more stable and allows the
model to learn long-term dependencies [7&8].
There are some variations on the LSTM architecture. One variant is the LSTM with peephole introduced by [10]. In
this variation, the cell memory influences the input, forget and output gates. Conceptually, the model peeps into the
memory cell before deciding whether to memorize or forget. In [11], input and forget gate is merged together into one
gate. There are many other variations such as the ones presented in [12,13].All those variations have similar
performance as shown in [14].
The LSTM hardware module that was implemented focuses on the LSTM version that does not have peepholes, which
is shown in figure 2. This is the vanilla LSTM [15], which is characterized by the following equations:

Figure 2: The vanilla LSTM architecture that was implemented in hardware represents matrix-vector multiplication
and is element-wise multiplication.

where is the logistic sigmoid function, is element wise multiplication, x is the input vector of the layer, W is the
model parameters, c is memory cell activation, ~ct is the candidate memory cell gate, h is the layer output vector. The
subscript t-1 means results from the previous time step. Thei, f and o are respectively input, forget and output gate.
Conceptually, these gates decide when to remember or forget an input sequence, and when to respond with an output.
The combination of two matrix-vector multiplications and a non-linear function, f(Wxxt+ Whht 1 + b), extracts
information from the input and previous output vectors. This operation is referred as gate.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 403

One needs to train the model to get the parameters that will give the desired output. In simple terms, training is an
iterating process in which training data is fed in and the output is compared with a target. Then the model needs to back
propagate the error derivatives to update new parameters that minimize the error. This cycle repeats until the error is
small enough[16]. Models can become fairly complex as more layers and more different functions are added. For the
LSTM case, each module has four gates and some element-wise operations. A deep LSTM network would have
multiple LSTM modules cascaded in a way that the output of one layer is the input of the following layer.

III. RELATED WORK

Co-processors for Convolutional Neural Networks (CNNs) have been implemented on FPGAs. In [17], a architecture
formed by a grid of operation modules can perform image convolutions. A similar implementation is described in [18].
A improved version of accelerator for CNNs is described in [19]. NN-X is a high performance co-processor for deep
neural networks implemented on FPGA. The design is based on computational elements called collection that are
capable of performing convolution, non-linear functions and pooling. The accelerator efficiently pipelines the
collections achieving up to 240 G-op/s.

MPUE: In this attack, the objective is to obstruct the DSA process of SUs- i.e., prevent SUs from detecting and using
vacant licensed spectrum bands, causing denial of service.

IV.RESULT AND DISCUSSION

4.1Hardware:
In this paper, the main operations to be implemented in hardware are matrix-vector multiplications and non-linear
functions (hyperbolic tangent and logistic sigmoid). Both are modifications of the modules from previous work
presented in [19]. For this design, the number format of choice is Q8.8 fixed point. The matrix-vector multiplication is
computed by a Multiply Accumulate (MAC) unit, which takes two streams: vector stream and weight matrix row
stream. The same vector stream is multiplied and accumulated with each weight matrix row to produce an output vector
with same size of the weight’s height. The MAC is reset after computing each output element to avoid accumulating
previous matrix rows computations. The bias b can be added in the multiply accumulate by adding the bias vector to
the last column of the weight matrix and adding an extra vector element set to unity. This way there is no need to add
extra input ports for the bias nor add extra pre-configuration step to the MAC unit. The results from the MAC units are
added together. The adder’s output goes to an element wise non-linear function, which is implemented with linear
mapping.
The non-linear function is segmented into lines y =ax+ b, with x limited to a particular range. The values of a, b and x
range are stored in configuration registers during the configuration stage. Each line segment is implemented with
aMAC unit and a comparator. The MAC multiplies α and χ and accumulates with b. The comparison between the input
value with the line range decides whether to process the input or pass it to the next line segment module. The non-linear
functions were segmented into 13 lines, thus the non-linear module contains 13 pipelined line segment modules. The
main building block of the implemented design is the gate module as shown in figure 3.

Figure 3: The main hardware module that implements the LSTM gates.The non-linear module can be configured to be

a tanh or logistic sigmoid.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 404

The implemented module uses Direct Memory Access (DMA) ports to stream data in and out. The DMA ports use
valid and ready handshake. Because the DMA ports are independent, the input streams are not synchronized even when
the module activates the ports at same the time. Therefore, a stream synchronizing module is needed. The sync block is
a buffer that caches some streaming data until all ports are streaming. When the last port starts streaming, the sync
block starts to output synchronized streams. This ensures that vector and matrix row elements that goes to MAC units
are aligned.
The gate module in figure 3 also contains a rescale block that converts 32 bit values to 16 bit values. The MAC units
perform 16 bit multiplication that results into 32 bit values. The addition is performed using 32 bit values to preserve
accuracy.
All that is left are some element wise operations to calculate ct and ht in equations 5 and 6. To do this, extra multipliers
and adders were added into a separate module shown in figure 4.

Figure 4: The module that computes the ct and ht from the results of the gates. is element-wise multiplication.

The LSTM module uses three blocks from figure 3 and one from figure 4. The gates are pre-configured to have a non-
linear function (tanh or sigmoid). The LSTM module is shown in figure 5.

Figure 5: The LSTM module block diagram. It is mainly composed of three gates and one final stage module.

The internal blocks are controlled by a state machine to perform a sequence of operations. The implemented design
uses four 32 bit DMA ports. Since the operations are done in 16 bit, each DMA port can transmit two 16 bit streams.
The weights Wx and Wh are concatenated in the main memory to exploit this feature. The streams are then routed to
different modules depending on the operation to be performed. With this setup, the LSTM computation was separated
into three sequential stages:
1. Compute it and ~ct.
2. Compute ft and ot.
3. Compute ct and ht.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 405

In the first and second stage, two gate modules (4 MAC units) are running in parallel to generate two internal vectors
(it, ~ct,ftand ot), which are stored into a First In First Out (FIFO) for the next stages. The final stage consumes the FIFO
vectors to output the htand ct back to main memory. After the final stage, the module waits for new weights and new
vectors, which can be for the next layer or next time step. The hardware also implements an extra matrix-vector
multiplication to generate the final output. This is only used when the last LSTM layer has finished its computation.
This architecture was implemented on the Zedboard, which contains the Zynq-7000 SOCXC7Z020. The chip contains
Dual ARM Cortex-A9 MPCore, which is used for running theLSTM driver C code and timing comparisons. The
hardware utilization is shown in table 1. The module runs at 142 MHz and the total on-chip power is 1:942 W.

Components Utilization
[/]

Utilization
[%]

FF 12960 12.18

LUT 7201 13.54

Memory
LUT 426 2.45

BRAM 16 11.43

DSP48 50 22.73

BUFG 1 3.12

Table 1:FPGA hardware resource utilization for Zynq ZC7020.

4.2 Driving Software:
It considers the control and testing software was implemented with C code. The software populates the main memory
with weight values and input vectors, and it controls the hardware module with a set of configuration registers.
The weight matrix has an extra element containing the bias value in the end of each row. The input vector contains an
extra unity value so that the matrix-vector multiplication will only add the last element of the matrix row (bias
addition). Usually the input vector x size can be different from the output vector h size. Zero padding was used to
match both the matrix row size and vector size, which makes stream synchronization easier.
Due to the recurrent nature of LSTM, ct and ht becomes the ct 1 and ht 1 for the next time step. Therefore, the input
memory location for ct1 and ht 1 is the same for the output ct and ht. Each time step c and h is overwritten. This is done
to minimize the number of memory copies done by the CPU. To implement a multi-layer LSTM, the output of the
previous layer ht was copied to the xt location of the next layer, so that ht is preserved in between layers for error
measurements. This feature was removed for profiling time. The control software also needs to change the weights for
different layers by setting different memory locations in the control registers.

V. EXPERIMENTS

The training script by Andrej Karpathy of the character level language model was written in Torch7. The code can be
downloaded from Github1. Additional functions were written to transfer the trained parameters from the Torch7 code
to the control software.
The Torch7 code implements a character level language model, which predicts the next character given a previous
character. Character by character, the model generates a text that looks like the training data set, which can be a book or
large internet corpora with more than 2 MB of words. For this experiment, the model was trained on a subset of
Shakespeare’s work. The model is expected to output Shakespeare look like text.
The Torch7 code implements a 2 layer LSTM with hidden layer size 128 (weight matrix height). The character input
and output is a 65 sized vector one-hot encoded. The character that the vector represents is the index of the only unity
element. The predicted character from last layer is fed back to input xt of first layer for following time step.
For profiling time, the Torch7 code was ran on other embedded platforms to compare the execution time between them.
One platform is the Tegra K1 development board, which contains quad-core ARM Cortex-A15 CPU and Kepler GPU

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 406

192 Cores. The Tegra’s CPU was clocked at maximum frequency of 2320:5 MHz. The GPU was clocked at maximum
of 852 MHz. The GPU memory was running at 102 MHz.
Another platform used is the Odroid XU4, which has the Exynos5422 with four high performance Cortex-A15 cores
and four low power Cortex-A7 cores (ARM big.LITTLE technology). The low power Cortex-A7 cores was clocked at
1400 MHz and the high performance Cortex-A15 cores was running at 2000 MHz.
The C code LSTM implementation was ran on Zed board’s dual ARM Cortex-A9 processor clocked at 667 MHz.
Finally, the hardware was ran on Zed board’s FPGA clocked at 142 MHz.

 VI.RESULTS

6.1Accuracy:
The number of weights of some models can be very large. Even our small model used almost 530 KB of weights. Thus
it makes sense to compress those weights into different number formats for a throughput versus accuracy trade off. The
use of fixed point Q8.8 data format certainly introduces rounding errors. Then one may raise the question of how much
these errors can propagate to the final output. Comparing the results from the Torch7 code with the LSTM module’s
output for same xt sequence, the average percentage error for the ct was 3:9% and for htwas 2:8%. Those values are
average error of all time steps. The best was 1:3% and the worse was 7:1%. The recurrent nature of LSTM did not
accumulate the errors and on average it stabilized at a low percentage.
The text generated by sampling 1000 characters (timestep t = 1 to 1000) is shown in figure 6. On the right is text output
from FPGA and the left text is from the CPU implementation. The result shows that the LSTM model was able to
generate personage dialog, just like in one of Shakespeare’s book. Both implementations displayed different texts, but
same behaviour. This happens because some error causes the model to predict a slightlydifferent character which
change the prediction sequence.

ezWhan I have s ll the soul of thee
That I may be the sun to the state,
That we may be the bear the state to see,
That is the man that should be so far o the world.

eButthy’ld not Kindle perpide’d thee this!
So shall you shall be gratefully not—
Dost there enring?

KING EDWARD IV:
Why,then I see thee to the common sons
That we may be a countering thee there were
The sea for the most cause to the common sons,
That we may be the boy of the state to thee,
That is the sea for the most contrary.

KING EDWARD IV:
Steep that we do desire.near me in seeming here?

KING RICHARD II:
Then we shall be a super in this seas
Of the statue of my sons and therefore with the statue
To the sea of men with the storesy

HASTINGS:
And I am coming to prey you

BIANCA:
He shall be you both so, get your lord, I’ll sea-tay. The law, how
both his sake, let him not only smiles
and my sons but was, lend that common me within:
I mean the case of me chooser.

DUKE VICENTIO:
I cannot say the prince that hath a sun
To the prince and the world that was the state,
And then the world that was the state to thee,
That is the sea for the most cause to the common sons,
That we may be the sun to the state to thee,
That is the man that should be so far off the world.

QUEEN MARGARET:
And then the world that was the state to thee,
That is the man that should be so far off the world

LUCIO:
And of this feelemclustion what I was forward.
Yer, as it is trudment.

PETRUCHI:
Suggetion your shape.
Than all the morn unknoward:
Which, good how be thy juistice, which he will dead?
Speak, let me took no more pitch
The bloody dealest heart would show it, to death.
And if those Caius shalt go alone ; befefience
Or lie,the love fell’d with mine;
Then, yet so, fair of him wall: graces, nbe curs—
I wish thee, cake for my heart, and ear and ever

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 407

Figure 6: On the right side is the output text from the LSTM hardware. On the left side is text from CPU
implementation. The model predicts each next character based on the previouscharacters. The model only gets the first
character (seed) and generates the entire text character by character.
6.2Memory Bandwidth:
After The Zedboard Zynq ZC7020 platform has 4 advanced extensible Interface (AXI) DMA ports avail-able. Each is
ran at 142 mhz and send packagesOf 32 bits. This allows aggregate bandwidth up to 3:8 GB/s full-duplex transfer
between FPGA and external DDR3.
At 142mhz, One LSTM module is capable of computing 388:8 Mops/s and uses simultaneously 4 AXI DMA ports for
streaming weight and vectorValues[20]. During the peak memory usage, the module requests 2048 Bytes every 187
clock cycles. To run various replicated LSTM module, it isrequired to use more AXI ports or to introduce internal
memory to lower requirements of external DDR3 memory usage.

6.3Performance:
Figure 7 shows the timing results. One can observe that the implemented hardware LSTM was significantly faster than
other platforms, even running at lower clock frequency of 142 MHz (Zynq ZC7020 CPU uses 667 MHz). Scaling the
implemented design by replicating the number of LSTM modules running in parallel will provide faster speed up.
Using 8 LSTM cells in parallel can be 16 faster than Exynos5422. Figure 8 shows the expected speed up, assuming the
data throughput is high enough to handle the parallel processing. Figure 9 shows the projected FPGA resources
utilization in the Zynq ZC7020. It is possible to fit 8 LSTM cells, for this particular device. Given the necessary
resources, the LSTM module can be further replicated to improve performance, since the modules can operate
independently.

Figure 7: Execution time of feed forward LSTM character level language model on different embed-ded platforms (the
lower the better).

Figure 8: The execution time is projected to decrease with the increase of number of LSTM cells running in parallel.
This can lead to significant performance improvement.

Furthermore, The GPU performance was slower because of the following reasons [21]. The model is too small for
getting benefit from GPU, since the software needs to do memory copies. This is confirmed by running the same

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 408

Torch7 code on a MacBook PRO 2016. The CPU of the MacBook PRO 2016 executed the Torch7 code for character
level language model in 0:304 s, whereas the MacBook PRO 2016’s GPU executed the same test in 0:569 s.

VII. CONCLUSION

a channel, Recurrent Neural Networks have recently gained popularity due to the success from the use ofLong Short
Term Memory architecture in many applications, such as speech recognition, machinetranslation, scene analysis and
image caption generation.
This work presented a hardware implementation of LSTM module. The hardware successfully produced Shakespeare-
like text using a character level model. Furthermore, the implemented hardware showed to be significantly faster than
other mobile platforms. This work can potentially evolve to a RNN co-processor for future devices, although further
work needs to be done. The main future work is to optimize the design to allow parallel computation of the gates. This
involves designing a parallel MAC unit configuration to perform the matrix-vector multiplication.

ACKNOWLEDGMENTS

This work is supported by Office of Naval Research (ONR) grants 14PR02106-01 P00004 and MURI N000141010278
and National Council for the Improvement of Higher Education (CAPES) through Brazil scientific Mobility Program
(BSMP). We would like to thank Vinayak Gokhale for the discussion on implementation and hardware architecture and
also thank Alfredo Canziani, Ay-segulDundar and Jonghoon Jin for the support. We gratefully appreciate the support of
NVIDIA Corporation with the donation of GPUs used for this research.

REFERENCES

[1] Graves, et al. Speech recognition with deep re-current neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on, (2013) 6645–6649.
[2] Sutskever, et al. Sequence to sequence learning with neural net-works. In Advances in neural information processing systems (2014) 3104–
3112.
[3] Byeon, et al.Scene analysis by mid-level attribute learning using 2d lstm networks and an application to web-image tagging. Pattern
Recognition Letters (2015) 63:23–29.
[4] Vinyals, et al. Show and tell: A neural image caption generator. ArXiv preprint arXiv(2014) 1411.4555.
[5] Mao, et al. Explain images with multimodal recurrent neural networks. ArXiv preprint arXiv (2014)1410:1090.
[6] Fang, Hao, et al. From captions to visual concepts and back.arXiv preprint arXiv (20141)1411:4952.
[7] Hochreiter, et al. Long short-term memory. Neural computation, (1997) 9: 1735–1780.
[8] Schmidhuber, Jurgen. Deep learning in neural networks: An overview. Neural Networks (2015) 61:85– 117.
[9] K R Chowdhury Bengio,et al. Learning long-term dependencies with gra-dient descent is difficult. Neural Networks, IEEE Transactions on
(1994) 5:157–166.
[10] Gers, et al. Recurrent nets that time and count. In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on, (2000) 3: 189–194..
[11] Cho, Kyunghyun, et al.Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv(2014)1406:1078.
[12] Sak, et al.. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Annual
Conference of International Speech Communication Association (INTERSPEECH), 2014.
[13] Otte, et al. Dynamic cortex memory: Enhancing recurrent neural networks for gradient-based sequence learning. In Artificial Neural Networks
and Machine Learning–ICANN (2014) 1–8.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 1, January 2016

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2015.0501067 409

[14] Greff, Klaus, et al. Lstm: A search space odyssey. arXiv preprint arXiv (2015)1503:4069.
[15] Graves, et al. Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural Networks, (2005)
18(5):602–610.
[16] Bishop, Christopher M. Pattern recognition and machine learning (2006) 225–284.
[17] Farabet, et al. Hardware accelerated convolutional neural networks for synthetic vision systems. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, (2010) 257– 260.
[18] Farabet, Neuflow: A runtime reconfigurable dataflow processor for vision. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, (2011) 109–116.
[19] Gokhale, Vinayak, et al. A 240 g-ops/s mobile coprocessor for deep neural networks. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2014 IEEE Conference on, (2014) 696–701.
[20] Li, Sicheng, et al. Fpga acceleration of recurrent neural network based language model.
[21] Tavcar, et al. Transforming the lstm training al-gorithm for efficient fpga-based adaptive control of nonlinear dynamic systems.
INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERI-ALS, (2013) 43:131–138.

