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ABSTRACT: Recurrent Neural Networks (RNNs) have the ability to retain memory and learn data sequences. Due to 
the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware. CPUs 
do not currently offer large parallelism, while GPUs offer limited parallelism due to sequential components of RNN 
models. In this paper we present a hardware implementation of Long-Short Term Memory (LSTM) recurrent network 
on the programmable logic Zynq 7020 FPGA from Xilinx. We implemented a RNN with 2 layers and 128 hidden units 
in hardware and it has been tested using a character level language model. The implementation is more than 21 faster 
than the ARM CPU embedded on the Zynq 7020 FPGA. This work can potentially evolve to a RNN co-processor for 
future mobile devices. 
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I. INTRODUCTION 
 

One of the The phenomena of the universe may be represented with different dimensions and variables, but one 
dimension is always present in all of the universe: time. Things that happen now may be caused by what has happened 
in the past, and it may not make sense to analyze the present without accounting for the past. 
A Neural Network, or NN, is a generic architecture used in machine learning that can map different types of 
information. Given an input, a trained NN can give the desired output. However, NNs cannot learn from sequences. 
Recurrent Neural Networks, or RNNs, address this issue by adding feed-back to standard neural networks. Thus, 
previous outputs are taken into account for the prediction of the next output. RNNs has been shown to be successful in 
various applications, such as speech recognition [1], machine translation [2] and scene analysis [3]. A combination of a 
Convolutional Neural Network (CNN) with a RNN can lead to fascinating results such as image caption generation [4-
6]. 
Due to the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware. 
General purposes CPUs do not currently offer large parallelism, while small RNN models do not get full benefit from 
GPUs. Thus, an optimized hardware architecture is necessary for executing RNNs models on embedded systems. 
Long Short Term Memory, or LSTM [7,8] is a specific RNN architecture that implements a learned memory controller 
for avoiding vanishing or exploding gradients [9].The purpose of this paper is to present a LSTM hardware module 
implemented on the Zynq 7020 FPGA from Xilinx. Figure 1 shows an overview of the system. As proof of concept, the 
hardware was tested with a character level language model made with 2 LSTM layers and 128 hidden units. The next 
following sections present the background for LSTM, related work, implementation details of the hardware and driver 
software, the experimental setup and the obtained results. 

 
Figure 1: The LSTM hardware was implemented using a Zed board Zynq ZC7020. 
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II. LSTM BACKGROUND 
 
Cognitive One main feature of RNNs is that they can learn from previous information. But the question is how far 
should a model remember, and what to remember. Standard RNN can retain and use recent past information[8]. But it 
fails to learn long-term dependencies. Vanilla RNNs are hard to train for long sequences due to vanishing or exploding 
gradients[9].This is where LSTM comes into play. LSTM is an RNN architecture that adds memory controllers to 
decide when to remember, forget and output. This makes the optimization procedure much more stable and allows the 
model to learn long-term dependencies [7&8]. 
There are some variations on the LSTM architecture. One variant is the LSTM with peephole introduced by  [10]. In 
this variation, the cell memory influences the input, forget and output gates. Conceptually, the model peeps into the 
memory cell before deciding whether to memorize or forget. In [11], input and forget gate is merged together into one 
gate. There are many other variations such as the ones presented in [12,13].All those variations have similar 
performance as shown in [14].  
The LSTM hardware module that was implemented focuses on the LSTM version that does not have peepholes, which 
is shown in figure 2. This is the vanilla LSTM [15], which is characterized by the following equations:  

 
 
Figure 2: The vanilla LSTM architecture that was implemented in hardware  represents matrix-vector multiplication 
and is element-wise multiplication. 
 

 
 

where is the logistic sigmoid function,  is element wise multiplication, x is the input vector of the layer, W is the 
model parameters, c is memory cell activation, ~ct is the candidate memory cell gate, h is the layer output vector. The 
subscript t-1 means results from the previous time step. Thei, f and o are respectively input, forget and output gate. 
Conceptually, these gates decide when to remember or forget an input sequence, and when to respond with an output. 
The combination of two matrix-vector multiplications and a non-linear function, f(Wxxt+ Whht 1 + b), extracts 
information from the input and previous output vectors. This operation is referred as gate.  
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One needs to train the model to get the parameters that will give the desired output. In simple terms, training is an 
iterating process in which training data is fed in and the output is compared with a target. Then the model needs to back 
propagate the error derivatives to update new parameters that minimize the error. This cycle repeats until the error is 
small enough[16]. Models can become fairly complex as more layers and more different functions are added. For the 
LSTM case, each module has four gates and some element-wise operations. A deep LSTM network would have 
multiple LSTM modules cascaded in a way that the output of one layer is the input of the following layer.  
 

III. RELATED WORK 
 

Co-processors for Convolutional Neural Networks (CNNs) have been implemented on FPGAs. In [17], a architecture 
formed by a grid of operation modules can perform image convolutions. A similar implementation is described in [18]. 
A improved version of accelerator for CNNs is described in [19]. NN-X is a high performance co-processor for deep 
neural networks implemented on FPGA. The design is based on computational elements called collection that are 
capable of performing convolution, non-linear functions and pooling. The accelerator efficiently pipelines the 
collections achieving up to 240 G-op/s.  
 
MPUE: In this attack, the objective is to obstruct the DSA process of SUs- i.e., prevent SUs from detecting and using 
vacant licensed spectrum bands, causing denial of service. 
 

IV.RESULT AND DISCUSSION 
 

4.1Hardware:  
In this paper, the main operations to be implemented in hardware are matrix-vector multiplications and non-linear 
functions (hyperbolic tangent and logistic sigmoid). Both are modifications of the modules from previous work 
presented in [19]. For this design, the number format of choice is Q8.8 fixed point. The matrix-vector multiplication is 
computed by a Multiply Accumulate (MAC) unit, which takes two streams: vector stream and weight matrix row 
stream. The same vector stream is multiplied and accumulated with each weight matrix row to produce an output vector 
with same size of the weight’s height. The MAC is reset after computing each output element to avoid accumulating 
previous matrix rows computations. The bias b can be added in the multiply accumulate by adding the bias vector to 
the last column of the weight matrix and adding an extra vector element set to unity. This way there is no need to add 
extra input ports for the bias nor add extra pre-configuration step to the MAC unit. The results from the MAC units are 
added together. The adder’s output goes to an element wise non-linear function, which is implemented with linear 
mapping. 
The non-linear function is segmented into lines y =ax+ b, with x limited to a particular range. The values of a, b and x 
range are stored in configuration registers during the configuration stage. Each line segment is implemented with 
aMAC unit and a comparator. The MAC multiplies α and χ and accumulates with b. The comparison between the input 
value with the line range decides whether to process the input or pass it to the next line segment module. The non-linear 
functions were segmented into 13 lines, thus the non-linear module contains 13 pipelined line segment modules. The 
main building block of the implemented design is the gate module as shown in figure 3. 
 

 
 
Figure 3: The main hardware module that implements the LSTM gates.The non-linear module can be configured to be 

a tanh or logistic sigmoid. 
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The implemented module uses Direct Memory Access (DMA) ports to stream data in and out. The DMA ports use 
valid and ready handshake. Because the DMA ports are independent, the input streams are not synchronized even when 
the module activates the ports at same the time. Therefore, a stream synchronizing module is needed. The sync block is 
a buffer that caches some streaming data until all ports are streaming. When the last port starts streaming, the sync 
block starts to output synchronized streams. This ensures that vector and matrix row elements that goes to MAC units 
are aligned.  
The gate module in figure 3 also contains a rescale block that converts 32 bit values to 16 bit values. The MAC units 
perform 16 bit multiplication that results into 32 bit values. The addition is performed using 32 bit values to preserve 
accuracy. 
All that is left are some element wise operations to calculate ct and ht in equations 5 and 6. To do this, extra multipliers 
and adders were added into a separate module shown in figure 4. 
 

 
Figure 4: The module that computes the ct and ht from the results of the gates. is element-wise multiplication. 

 
The LSTM module uses three blocks from figure  3 and one from figure 4. The gates are pre-configured to have a non-
linear function (tanh or sigmoid). The LSTM module is shown in figure 5.  

 
Figure 5: The LSTM module block diagram. It is mainly composed of three gates and one final stage module. 

 
The internal blocks are controlled by a state machine to perform a sequence of operations. The implemented design 
uses four 32 bit DMA ports. Since the operations are done in 16 bit, each DMA port can transmit two 16 bit streams. 
The weights Wx and Wh are concatenated in the main memory to exploit this feature. The streams are then routed to 
different modules depending on the operation to be performed. With this setup, the LSTM computation was separated 
into three sequential stages: 
1. Compute it and ~ct. 
2. Compute ft and ot. 
3. Compute ct and ht. 
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In the first and second stage, two gate modules (4 MAC units) are running in parallel to generate two internal vectors 
(it, ~ct,ftand ot), which are stored into a First In First Out (FIFO) for the next stages. The final stage consumes the FIFO 
vectors to output the htand ct back to main memory. After the final stage, the module waits for new weights and new 
vectors, which can be for the next layer or next time step. The hardware also implements an extra matrix-vector 
multiplication to generate the final output. This is only used when the last LSTM layer has finished its computation. 
This architecture was implemented on the Zedboard, which contains the Zynq-7000 SOCXC7Z020. The chip contains 
Dual ARM Cortex-A9 MPCore, which is used for running theLSTM driver C code and timing comparisons. The 
hardware utilization is shown in table 1. The module runs at 142 MHz and the total on-chip power is 1:942 W. 
 

Components Utilization 
[ / ] 

Utilization 
[%] 

FF 12960 12.18 

LUT 7201 13.54 

Memory 
LUT 426 2.45 

BRAM 16 11.43 

DSP48 50 22.73 

BUFG 1 3.12 
 

Table 1:FPGA hardware resource utilization for Zynq ZC7020. 
 
4.2 Driving Software: 
It considers the control and testing software was implemented with C code. The software populates the main memory 
with weight values and input vectors, and it controls the hardware module with a set of configuration registers. 
The weight matrix has an extra element containing the bias value in the end of each row. The input vector contains an 
extra unity value so that the matrix-vector multiplication will only add the last element of the matrix row (bias 
addition). Usually the input vector x size can be different from the output vector h size. Zero padding was used to 
match both the matrix row size and vector size, which makes stream synchronization easier. 
Due to the recurrent nature of LSTM, ct and ht becomes the ct 1 and ht 1 for the next time step. Therefore, the input 
memory location for ct1 and ht 1 is the same for the output ct and ht. Each time step c and h is overwritten. This is done 
to minimize the number of memory copies done by the CPU. To implement a multi-layer LSTM, the output of the 
previous layer ht was copied to the xt location of the next layer, so that ht is preserved in between layers for error 
measurements. This feature was removed for profiling time. The control software also needs to change the weights for 
different layers by setting different memory locations in the control registers. 
 

V. EXPERIMENTS 
 

The training script by Andrej Karpathy of the character level language model was written in Torch7. The code can be 
downloaded from Github1. Additional functions were written to transfer the trained parameters from the Torch7 code 
to the control software.  
The Torch7 code implements a character level language model, which predicts the next character given a previous 
character. Character by character, the model generates a text that looks like the training data set, which can be a book or 
large internet corpora with more than 2 MB of words. For this experiment, the model was trained on a subset of 
Shakespeare’s work. The model is expected to output Shakespeare look like text. 
The Torch7 code implements a 2 layer LSTM with hidden layer size 128 (weight matrix height). The character input 
and output is a 65 sized vector one-hot encoded. The character that the vector represents is the index of the only unity 
element. The predicted character from last layer is fed back to input xt of first layer for following time step. 
For profiling time, the Torch7 code was ran on other embedded platforms to compare the execution time between them. 
One platform is the Tegra K1 development board, which contains quad-core ARM Cortex-A15 CPU and Kepler GPU 
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192 Cores. The Tegra’s CPU was clocked at maximum frequency of 2320:5 MHz. The GPU was clocked at maximum 
of 852 MHz. The GPU memory was running at 102 MHz. 
Another platform used is the Odroid XU4, which has the Exynos5422 with four high performance Cortex-A15 cores 
and four low power Cortex-A7 cores (ARM big.LITTLE technology). The low power Cortex-A7 cores was clocked at 
1400 MHz and the high performance Cortex-A15 cores was running at 2000 MHz. 
The C code LSTM implementation was ran on Zed board’s dual ARM Cortex-A9 processor clocked at 667 MHz. 
Finally, the hardware was ran on Zed board’s FPGA clocked at 142 MHz. 

 
                                                      VI.RESULTS 
 

6.1Accuracy: 
The number of weights of some models can be very large. Even our small model used almost 530 KB of weights. Thus 
it makes sense to compress those weights into different number formats for a throughput versus accuracy trade off. The 
use of fixed point Q8.8 data format certainly introduces rounding errors. Then one may raise the question of how much 
these errors can propagate to the final output. Comparing the results from the Torch7 code with the LSTM module’s 
output for same xt sequence, the average percentage error for the ct was 3:9% and for htwas 2:8%. Those values are 
average error of all time steps. The best was 1:3% and the worse was 7:1%. The recurrent nature of LSTM did not 
accumulate the errors and on average it stabilized at a low percentage. 
The text generated by sampling 1000 characters (timestep t = 1 to 1000) is shown in figure 6. On the right is text output 
from FPGA and the left text is from the CPU implementation. The result shows that the LSTM model was able to 
generate personage dialog, just like in one of Shakespeare’s book. Both implementations displayed different texts, but 
same behaviour. This happens because some error causes the model to predict a slightlydifferent character which 
change the prediction sequence. 
 

ezWhan I have s ll the soul of thee 
That I may be the sun to the state, 
That we may be the bear the state to see, 
That is the man that should be so far o  the world. 

eButthy’ld not Kindle perpide’d thee this! 
So shall you shall be gratefully not— 
Dost there enring? 

 
KING EDWARD IV: 
Why,then I see thee to the common sons 
That we may be  a countering thee there were 
The sea for the most cause to the common sons, 
That we may be the boy of the state to thee, 
That is the sea for the most contrary. 

 
KING EDWARD IV: 
Steep that we do desire.near me in seeming here? 

 
 
KING RICHARD II: 
Then we shall be a super in this seas 
Of the statue of my sons and therefore with the statue 
To the sea of men with the storesy 
 

 
HASTINGS: 
And I am coming to prey you 
 
BIANCA: 
He shall be you both so, get your lord, I’ll sea-tay. The law, how 
both his sake, let him not only smiles 
and my sons but was, lend that common me within: 
I mean the case of me chooser. 

DUKE VICENTIO: 
I cannot say the prince that hath a sun 
To the prince and the world that was the state, 
And then the world that was the state to thee, 
That is the sea for the most cause to the common sons, 
That we may be the sun to the state to thee, 
That is the man that should be so far off the world. 
 
QUEEN MARGARET: 
And then the world that was the state to thee, 
That is the man that should be so far off the world 

LUCIO: 
And of this feelemclustion what I was forward. 
Yer, as it is trudment. 
 
PETRUCHI: 
Suggetion your shape. 
Than all the morn unknoward: 
Which, good how be thy juistice, which he will dead? 
Speak, let me took no more pitch 
The bloody dealest heart would show it, to death. 
And if those Caius shalt go alone ; befefience 
Or lie,the love fell’d with mine; 
Then, yet so, fair of him wall: graces, nbe curs— 
I wish thee, cake for my heart, and ear and ever 
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Figure 6: On the right side is the output text from the LSTM hardware. On the left side is text from CPU 
implementation. The model predicts each next character based on the previouscharacters. The model only gets the first 
character (seed) and generates the entire text character by character. 
6.2Memory Bandwidth: 
After The Zedboard Zynq ZC7020 platform has 4 advanced extensible Interface (AXI) DMA ports avail-able. Each is 
ran at 142 mhz and send packagesOf 32 bits. This allows aggregate bandwidth up to 3:8 GB/s full-duplex transfer 
between FPGA and external DDR3. 
At 142mhz, One LSTM module is capable of computing 388:8 Mops/s and uses simultaneously 4 AXI DMA ports for 
streaming weight and vectorValues[20]. During the peak memory usage, the module requests 2048 Bytes every 187 
clock cycles. To run various replicated LSTM module, it isrequired to use more AXI ports or to introduce internal 
memory to lower requirements of external DDR3 memory usage. 
 
6.3Performance: 
Figure 7 shows the timing results. One can observe that the implemented hardware LSTM was significantly faster than 
other platforms, even running at lower clock frequency of 142 MHz (Zynq ZC7020 CPU uses 667 MHz). Scaling the 
implemented design by replicating the number of LSTM modules running in parallel will provide faster speed up. 
Using 8 LSTM cells in parallel can be 16 faster than Exynos5422. Figure 8 shows the expected speed up, assuming the 
data throughput is high enough to handle the parallel processing. Figure 9 shows the projected FPGA resources 
utilization in the Zynq ZC7020. It is possible to fit 8 LSTM cells, for this particular device. Given the necessary 
resources, the LSTM module can be further replicated to improve performance, since the modules can operate 
independently. 

 
Figure 7: Execution time of feed forward LSTM character level language model on different embed-ded platforms (the 
lower the better). 
 

 
Figure 8: The execution time is projected to decrease with the increase of number of LSTM cells running in parallel. 
This can lead to significant performance improvement. 
 
Furthermore, The GPU performance was slower because of the following reasons [21]. The model is too small for 
getting benefit from GPU, since the software needs to do memory copies. This is confirmed by running the same 
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Torch7 code on a MacBook PRO 2016. The CPU of the MacBook PRO 2016 executed the Torch7 code for character 
level language model in 0:304 s, whereas the MacBook PRO 2016’s GPU executed the same test in 0:569 s. 
 

VII. CONCLUSION 
 

a channel, Recurrent Neural Networks have recently gained popularity due to the success from the use ofLong Short 
Term Memory architecture in many applications, such as speech recognition, machinetranslation, scene analysis and 
image caption generation. 
This work presented a hardware implementation of LSTM module. The hardware successfully produced Shakespeare-
like text using a character level model. Furthermore, the implemented hardware showed to be significantly faster than 
other mobile platforms. This work can potentially evolve to a RNN co-processor for future devices, although further 
work needs to be done. The main future work is to optimize the design to allow parallel computation of the gates. This 
involves designing a parallel MAC unit configuration to perform the matrix-vector multiplication. 
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