

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7501

Remote Monitoring and Control by
Embedded Database Design and Web Server

Implementation

C.Balaji Kumar1, C.Madhu1, K.Tirumala Reddy3

Assistant Professor, Department of ECE, S V College of Engineering, Tirupati, A.P, India1,2,3

ABSTRACT: This paper describes the design of embedded system that enables the remote access of database by the
implementation of web server. Porting of Linux to ARM9 is carried out to enable further porting of embedded
webserver (BOA server) and SQLite database. The ported database is implemented by creating a table, storing the data
into the database and retrieving the same. An application is developed for displaying the data entered into the database
in a specific format. BOA web server is ported to home gateway platform and implemented in order to enable further
enhancements such as remote monitoring of data stored in the database. The web server is implemented by displaying
the web page stored in the server, when the concerned server address is entered into the browser. The SQLite database
along with BOA web server on ARM platform can be used in industries, remote areas, even at homes for monitoring
and controlling the status of appliances and machinery, by adding additional enhancements and doing slight
modifications according to the application.

KEYWORDS: SQLite, Database, Web server, BOA, Remote access and control

I. INTRODUCTION

The need of remote monitoring and access for various embedded applications has increased the demand for
investigating an effective technique in terms of cost as well as power. Various remote monitoring and controlling
techniques are studied [3]-[6], and it is identified that the best results can be obtained, when the database and web
server are designed specifically for embedded applications [1]. SQLite database and Boa webserver are such softwares
[1], [4], which satisfy the requirements of all embedded applications. An attempt of making use of the best features of
both SQLite database and Boa webserver has been proposed.

The block diagram of the proposed remote monitoring system is as shown in Fig1.1. MINI2440 development
board is used in the system design.The linux operating system (linux-2.6.32.2) is ported to ARM9 platform. Both the
SQLite database and boa webserver are ported to linux platform on MINI2440 development board. The version of
SQLite database, used in the proposal is SQLite-3.6.22 and the version of boa web server is boa-0.94.13. The SQLite
database is implemented by entering, retrieving and modifying the data using SQLite queries and commands. The
ARM development board itself acts as server. When the client requests for the data, stored in the server by specifying
appropriate address in the browser, the server sends it using http protocol. Thus, webserver is also implemented.

 As linux is a free open-source operating system and has to be customized and compiled for every new CPU
architecture, it is necessary to make the cross-compiler (such as gnu cross compiler) accessible on the execution path in
order to build the linux kernel. As the kernel contains lots of device drivers, network protocols, file system drivers etc.,
it is to be configured as per the requirement.

SQLite database, which is an in-process library has many merits such as server less, zero configuration etc.,
makes it suitable especially for embedded applications. The code for SQLite is also an open source and it has cross-
platform file format

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7502

Fig. 1: Block Diagram of the Project

The features such as small-footprint web server, open source make Boa suitable for embedded applications. In

addition to this, it has many more desirable features such as single-tasking, high processing speed, automatic directory
generation, automatic file extraction etc.

II. PORTING OF LINUX KERNEL TO ARM9 PLATFORM

In order to get the kernel compiled, the kernel source code, build tools, kernel configuration file are needed. It
is also required to have root or sudo privileges for the final stages of the process. For compiling the kernel on the
ARM9 board, cross compiler environment should be created.

A. ESTABLISHING CROSS COMPILER ENVIRONMENT:
The source code tar file of arm gcc cross compiler is copied to a directory such as (/opt/Friendlyarm/micro2440) and
thethe tar file is extracted.
The compiler path to the system environmentvariables is added.
The path in /root/.bashrc file is set.
For knowing whether the cross compiler has been installed or not, the following command is used:
arm -linux -gcc -v

B. COMPILING THE KERNEL:
The tar file is extracted in the working directory.
To make the ARM platform as default target platform for linux, Makefile is edited appropriately.
The default kernel configuration file is used, for testing linux compilation:

make S3C2410_defconfig
make

To determine the target platform,

gedit arch/arm/tools/mach_types

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7503

#gedit arch/arm/mach_S3C2440/mach_smdk2440.c

To test the compilation,

make mini2440_defconfig
make zImage

Fig. 2.1: Compiling zImage

For configuring Kernel menu,

make menuconfig
gedit arch/arm/mach-S3C2440/Kconfig
gedit arch/arm/mach-S3C2440/Makefile

For compiling uImage or zImage respectively,

make uImage or #make zImage

C. BUSYBOX:

Busybox is a package that provides all the basic things required for a root file system in a very compact form.
It is remarkably easy to configure, compile, and use, and it has the potential to significantly reduce the overall system
resources required to support a wide collection of common Linux utilities. Busybox installation steps:

Busybox source code is downloaded into testing directory and extract the file.
Busybox is configured using ‘make menuconfig’ instruction like kernel does.

make menuconfig

Busybox settings – installation options – (./install) Busybox installation prefix – path of testing directory

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7504

Fig. 2.2: Configuring busybox menu



The busyboxis compiled using
make
make install

The following steps are, to check the libraries needed by busybox to run. So move into the bin directory, where the
busybox resides and with the readelf command, it can be checked, whether the required libraries are there or not.

$CROSS COMPILE “read elf -a busybox|grep lib
cd ..
mkdir lib
cd lib

The appropriate shared libraries are copied into the library directory.

#cpusr/local/arm/4.3.2/arm-none-linuxgnueabi/
libc/armv4t/lib/ld-linux.so.3
#cpusr/local/arm/4.3.2/arm-none-linuxgnueabi/
libc/armv4t/lib/libm.so.6
#cpusr/local/arm/4.3.2/arm-none-linuxgnueabi/
libc/armv4t/lib/libc.so.6

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7505

Fig. 2.3: Copying the required libraries into target directory

III. PORTING OF SQLITE TO THE DEVELOPMENT BOARD

The sqlite source code is downloaded and extracted.
A directory build is created as follows:
mkdir build
cd build

Sqlite-3.6.22 build directory configure script generates a Makefile file:
./configure -host = arm-linux -prefix = <path>/sqlite- 3.6.22/build/target
make
make install

Fig. 3.1: Installation of SQLite

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7506

<path>/sqlite-3.6.22/build/target directory folder contains three main files, namely bin, include, lib.

All the files under the bin file are downloaded to the /usr/local/bin directory of development board. All the files under
the lib are downloaded to the /usr/local/lib directory of development board; and all the files of include directory which
contains sqlite, C-language API header files used in the programming are downloaded to the /usr/local/include
directory of development board.

Soft link is formed between the library files of /usr/local/ and library files of development board as shown below:

Fig. 3.2: SQLite library files are copied onto the board

The above step completes the porting of SQLite onto the development board.

IV. PORTING OF BOA TO THE DEVELOPMENT BOARD

Boa source code is downloaded and decompressed into subdirectory of source code directory.
tar -xzf boa-0.94.13.tar.gz
cd boa-0.94.13/src

Makefile is generated by
./configure

Makefile is modified: Find CC=gcc and CPP=gcc –E, change them to the directories CC=/opt/host/bin/armlinux-gcc
and CPP=opt/host/bin/arm-linux-gcc-E, in which the cross compiler is installed. Save and exit. Then run make
command to compile to get the executable program boa.
Boa configuration:
Boa needs to create a boa directory in /etc directory on the virtual machine and put the main configuration file boa.conf
into boa. In boa source directory, there has already an example boa.conf based on which, can be modified.

- Group nogroup is modified as group 0. Because there has no nogroup in file /etc/group, so it is to be set as 0.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7507

- There has nobody user in /etc/passwd, so user nobody need not be modified.
- ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ is modified as ScriptAlias /cgi-bin/ /var/www/cgi-bin/, and others are default
configurations.

Log file is created in /var/log/boa. The main directory for creating HTML documents is /var/www, and stores static
webpages into this directory. CGI scripts are generated in /var/www/cgi-bin, and cgi scripts are stored in this directory.
The file mime.types is copied to /etc directory. Generally, it can be copied directly from /etc directory of linux host.

Fig. 4.1: Boa configuration

Fig. 4.2: Boa ported to the development board

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7508

V. RESULTS AND DISCUSSIONS

An application program is written in C, which uses the basic SQLite functions for accepting the data, storing
and modifying it in the database and display it in a particular format. The flow chart of the application program is as
shown in fig 5.1. When the application is run with the data given as shown in Fig 5.2, the output is as shown in Fig 5.3.

Boa web server implementation: In order to implement the web server, it is required to know the server (target board)
ip address. The ip address of target board can be known by the command

ifconfig

All the required sqlite commands for creating a database are placed in a sql script and named as test1.sql. The
commands for updating the database and displaying the database are placed in a shell script, named as cmnd.sh. The
commands for copying the database file to a .html file in /www directory are placed in a shell script named as exe.sh.
The commands are as shown in Fig 5.6. When the client requests for a file, the server can send it only when it contains
the file in /www directory. The client has to request for the page that is present in /www directory of server by typing
the server address and specifying the file name or path.

Fig. 5.1: Application program

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7509

Fig.5.2: SQLite implementation

Fig. 5.3: Output of the application program

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7510

Fig. 5.4: Executing the application program using shell script

Fig. 5.6: The shell and sql scripts used in webserver implementation

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7511

Fig. 5.7: Updating the database by executing exe.sh

Fig. 5.8: html page containing the database, sent to the client on request

VI. CONCLUSION AND FUTURE SCOPE

The SQLite database is designed and implemented for embedded platform based on the ARM-Linux operating
system. The web server boa has been ported to arm linux platform and is implemented. When compared to other
databases, SQLite is perfectly suitable for embedded applications as it has the advantages like zero configurations,
server less, variable length record, cross platform, manifest typing, compact size etc. Similarly, when compared to the
traditional PC server, boa server has small storage, low cost, portability, easy to maintain and upgrade. The web server
Boa is selected for the proposal, because it consumes low power that is suitable for embedded applications. It also has
more functionsand supports CGI communication between external expansion applications and web server, which can
be achieved through CGI technology.

The SQLite database along with embedded web server can be applied easily to embedded fields such as on-

site AC servo system, industrial control, and intelligent appliances. Remote monitoring is applicable in a wide range of
industries like the oil and gas industry pharmaceutical, rail networks, electricity transmission and distribution of food

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2014

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2014.0302057 7512

and beverages.For example, we consider the upstream part of the oil and gas industry. It usually has several remote
locations which have a lot of potential for optimizing the manual activities done at the sites. Remote monitoring and
maintaining the database is a solution to achieve this. The benefits of using remote monitoring and maintaining the
database are adherence to regulatory, requirements in Operations, Improved safety in gas pipelines and plant area,
handling hydrocarbon (explosive fluids), cost benefits in centralized remote operations, availability of real time data for
better decisions, minimize the risk of emergency shutdowns due to failures and extend or eliminate scheduled service
intervals.

REFERENCES

[1] Guang Dong, Wei He, Yuhang Wang, Database Design on Embedded Home Gateway and Web Server Implementation
[2] Neil Matthew, Richard Stones, Beginning Linux@Programming, Wiley Publishing, Inc., 3rd edition.
[3] Christopher Hallinan, Embedded Linux Primer, APractical Real-World Approach, Prentice Hall, 2nd edition.
[4] Michael Owens, Embedding an SQL Database with SQLite, Linux Journal, June2003
[5] SUN Yu-hong, CUI Shao-bin, Research on embedded server of home network, Computer Engineering and Design, vol.29Antenna”, IEEE
transactions on antennas and propagation, vol.61, no. 3, march 2013
[6] Chen Tian-huang, Wuhan, Huang Jia, Design and Realization of CGI in Embedded Dynamic Web Technology

