
ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1809

LINUX BOOT TIME OPTIMIZATION –

 FTP SERVER
Rahul Tiwari

1
, Maulik Patel

2

M.Tech Student (VLSI and EMBEDDED SYSTEM), Dept. of E.C, U.V.Patel college of Engineering, Mehsana,

Gujarat, India
1

M.Tech Student (VLSI and EMBEDDED SYSTEM), Dept. of E.C, U.V.Patel college of Engineering, Mehsana,

Gujarat, India
2

ABSTRACT: One of the problems about operating system is the speed at which it boots. Linux is a general purpose

operating system. Today it can be used everywhere. It can be used as client or server right out of the box. Many

variations of Linux are currently being used in various real time mission critical systems which require a very high

degree of availability and minimal downtime during system upgrades and in consumer electronic products in which

user except their devices to be available for use very soon after being turned on . This leads to optimization of boot time

for Linux. In this paper we represent all techniques available for optimization. We describe the boot process under the

Linux, initial boot time and by using some of available technique how to reduce boot time for particular application e.g.

FTP Server in our case.

I. INTRODUCTION

Linux meets the requirements of everyone in all fields such as embedded, real time, personal computer in terms of

functionality, scalability and cost. Linux supports all these features because of its configurable nature. Linux is world„s

biggest and longest evolved software system.

Boot time i.e. the time taken by the system to show its "availability" since the power button was pushed on, is a

becoming a key differentiator in the usability factor.

The definition of availability varies across the devices.

For example:

Appearance of home screen for devices containing a display e.g. cell phone, media player.

An audible tone / LED turning on or changing colour for devices without display Appearance of shell prompts on

development systems with the console.

The important point to understand is that optimization of boot time should not compromise the system‟s existing

functionality and stability by any degree but in turn help the system to enhance its booting process for faster system

upgrade. Before optimizing, first we have to understand the boot process, measure the initial time and optimize it by

using different reduction techniques.

II. LINUX BOOT PROCESS

A. Boot Process Flow

 The process of booting a system running the Linux consists of multiple stages. Much of the flow of this process

is similar whether we are booting an x86 based personal computer or an embedded system based on any

architecture. The entire boot process of Linux can be roughly divided into 3 main areas firmware (boot-loaders),

kernel, and user space. The beginning of the boot process varies depending on the hardware platform being used.

However, once the kernel is found and loaded by the boot loader, the default boot process is identical across all

architectures.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1810

Fig. 1 Overview of Boot Process

Fig. 1 Boot Process Flow

The following is a list of events during a typical boot sequence:

1. Power on

2. Firmware (boot-loader) starts

3. The kernel decompression starts

4. The kernel start

5. User space start

6. RC script start

7. Application start

B. Booting Components

1) Boot-loader: Depending on the system's architecture, the boot process may differ slightly.

An embedded platform uses a bootstrap program (for example: U-Boot, Red-Boot and Micro Monitor from

Lucent). These programs shipped along with the embedded platforms and stay in a specific region of flash

memory on the target hardware. On the other hand, in a PC, BIOS resides at address 0xFFFF0 and the first step

of BIOS is Power on Self Test (POST). POST can vary from manufacture to manufacture (Asus, Mercury and

Intel) and version to version, because there is no standard exists.

There are several stages of boot-loaders that perform different levels of initialization on an OMAP platform,

in order to eventually load and run the file system.

X-loader:

The x-loader is a small first stage boot-loader derived from the u-boot base code. It is loaded into the internal

static RAM by the OMAP ROM code. Due to the small size of the internal static RAM, the x-loader is stripped

down to the essentials. The x-loader configures the pin muxing, clocks, DDR, and serial console, so that it can

access and load the second stage boot-loader (u-boot) into the DDR.

U-boot:

 The u-boot is a second stage boot-loader that is loaded by the x-loader into DDR. It comes from Das U-Boot.

The u-boot can perform CPU dependent and board dependent initialization and configuration not done in the x-

loader.

Boot-loader

Loads kernel to Ram and start it.

Kernel

Shell Other

Application

/sbin/init

Root file system

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1811

Fig. 2 Boot Sequence on Different Platform

2) Kernel: A kernel is a central component of an operating system. It acts as an interface between the user

applications and the hardware. The sole aim of the kernel is to manage the communication between the software

(user level applications) and the hardware (CPU, disk memory, etc.).

The main tasks of the kernel are: Process management, Device management, and Memory management,

interrupt handling, I/O communication, File system, etc. During boot process, The kernel initializes devices,

mounts the root file system specified by the boot loader as read only, and runs Init (/sbin/init) which is

designated as the first process run by the system (PID = 1).

3) File system: A file system is an organization of data and metadata on a storage device. There are many types of

file system and media. With all of this variation you can except the Linux file system interface is implemented as

a layered architecture.

A file system must be present in the kernel to start successfully. It can be an in memory file system, network

file system and can be attached to the kernel image loaded into memory.

FTP Server:

What is a server?

The server is nothing but a common place (e.g. A common folder on the computer), where shared data is available.

We can configure it as our requirement. E.g. all users can read and download data but only one user can upload on it.

FTP server is a File server. FTP server is used to transfer files between server and clients. All major operating

system supports FTP. FTP is the most used protocol over internet to transfer files. Like most Internet operations, FTP

works on a client/ server model. FTP client programs can enable users to transfer files to and from a remote system

running an FTP server program.

III. HARDWARE AND SOFTWARE PLATFORM

This section describes the hardware and software background used for this project. While the first part introduces

the hardware, part two is focused on the software platform.

A. Panda Board

ARM development boards are the ideal platform for accelerating the development and reducing the risk of new SoC

designs. The combination of ASIC and FPGA technology in ARM boards delivers an optimal solution in terms of

speed, accuracy, flexibility and cost.

As a hardware platform for this project, Panda board, a particular variant of the OMAP4 platform has been chosen.

The small and support of many peripherals makes it an ideal object for this project. The main processing core is a

BIOS
From ROM

X-loader
Stored in NAND or SD

Runs from SRAM

U-boot
Stored in NAND or SD

Runs from SDRAM

Stage 1
512 Bytes

From raw storage

AT91 Bootstrap
Stored in NAND or SPI Flash

Runs from SRAM

ROM Code
Stored in ROM

In the CPU

Stage 2
From raw storage

U-boot
Stored in NAND or SPI Flash

Runs from DRAM

ROM Code
 Stored in ROM

In the CPU

Kernel
From file system

Kernel
Stored in NAND, SD, Network

Runs from SDRAM

Kernel
Stored in NAND, SD, Network

Runs from SDRAM

Booting on X86 Booting on ARM AT91 Booting on ARM OMAP4

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1812

powerful Cortex-A9 clocked at 1 GHz which complies with the ARM Architecture. The OMAP4430 system-on-chip

(SoC) microprocessor has a variety of typical embedded system, like a real-time clock (RTC), DSP sub-system, Display

sub-system, and Audio back-end (ABE) sub-system. The device also integrates On-chip memory; External memory

interfaces System and connecting peripherals such as on-board Ethernet, LCD display controller, Zig-bee, Bluetooth,

HDMI and DVI ports. In addition to these on-chip components, it has 1 GB low power DDR2 RAM and General

purpose expansion header (I2C, GPMC, USB, MMC, DSS and ETM).

B. Software Platform

The software platform for this project was built with the help of the build-root. This includes everything needed to

work with a Linux based computer system. It contains GCC-compiler, boot-loaders, kernel, and lots of additional

libraries and useful tools like busy-box. We can also build manually by using make utility. First download the general

source coder for boot-loaders and kernel and then cross-compile it to generate boot-loader images e.g. MLO, U-

boot.bin and kernel image uImage.

Typical Starting Point:

Boot-Loader: U-Boot (2011.12)

OS: Linux (3.5.4)

File system: Build-root (2012.13)

Application: FTP Server

IV. MEASUREMENT AND OPTIMIZATION

A. Initial Measurement:

Optimization begins with knowing current boot-time, setting the target and defining the boundary conditions. First

we need to quantify the problem. We could use a stop-watch. But, that is not very accurate and rather tedious after the

first few runs. A better solution is to instrument the code or to monitor the boot from outside. We will describe both

techniques, starting with external monitoring.

The overall boot process involves boot-loader(s), Linux kernel and the file system. We must identify the markers in

the boot log that can be used as delimiters for each stage of the boot process. This helps in determining the time spent

in each stage.

X-loader

First newline character received on the serial console indicates start of x-loader.

U-boot

The banner containing the U-Boot version indicates the start of u-boot:

U-Boot 2010.06 (Apr 16 2011 - 15:22:19)

Linux kernel

First line after this indicates the start of Linux kernel:

Uncompressing Linux... done, booting the kernel.

File System

INIT: version 2.86 booting

Applicability of different boot time measurement techniques can be classified into three stages: System wide time

Measurement, Kernel invocation time Measurement, User space time measurement.

In the system wide time measurement stage, the boot time of the entire booting process is measured.

System wide measurement tools are grabserial and uptime. The kernel measurement tools determine the time spent

in various kernel functions and subroutines during kernel invocation. Major tools for determining kernel invocation

time are Printk–Times, Initcall_debug and KFT. User space time measurement depicts the total time spent from

starting of init process to the state where the system is operational. The user space measurement tools are Boot

chart and Strace.

We are use following two techniques for measuring total boot time.

1) Grabserial

There is a very useful program called grabserial, written by Tim Bird and available from

http://elinux.org/Grabserial. It is a Python script that adds a time stamp to each string received from a serial port.

The target I am using has a serial port for the console and general debugging, so We will use that. Most

embedded devices have such a thing.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1813

Usage:

 grabserial -v -d "/dev/ttyS0" -b 115200 8 30 -t -m "/#*"

-d <serial device>

-b <baudrate>

-m <match pattern that will reset time stamps>

-t <time in seconds indicating howmuch time it will run >

2) PRINTK_TIME

Enable following option in kernel configuration:

 Kernel Hacking Show timing information on printk.

B. Optimization:

Areas of optimization would fall into either of these categories:

1. Size

Reduce the size of binaries for each successive component loaded.

Remove features that are not required.

2. Speed

Optimize for target processor.

Use faster medium for loading primary, secondary boot loaders and kernel.

Reduce number of tasks leading to the boot.

Remove features that are not required.

Boot time is affected by different factors such as hardware, boot loader configurations, kernel configuration and

application profile. We will discuss various Boot time reduction techniques which will be used for optimizing Linux in

different steps of booting such as boot loader, Kernel loading, User-space application initialization and so on.

Boot-loader speedups

Kernel XIP: kernel image to be executed in-place in ROM or FLASH.

DMA Copy of Kernel on Start-up: Copy kernel image from Flash to RAM using DMA.

Uncompressed kernel: use uncompressed kernel image because uncompressed kernel might boot faster.

Fast Kernel Decompression: use fast decompression technique.

Kernel speedups

Disable Console: Avoid overhead of console output during system startup.

Disable bug and printk: Avoid the overhead of bug and printk. Disadvantage is that you lose a lot of info.

Preset LPJ: the use of a preset loops_per_jiffy value.

Reordering of driver initialization: Driver bus probing to start as soon as possible.

Deferred Initcalls: Defer non-essential module initialization routines to after primary boot.

User-space and application speedups

Optimize RC Scripts: Reduce overhead of running RC scripts.

Parallel RC Scripts: Run RC scripts in parallel instead of sequentially.

Application XIP: Allow programs and libraries to be executed in-place in ROM or FLASH.

Pre Linking: Avoid cost of runtime linking on first program load.

Statically link applications. This avoids the costs of runtime linking. Useful if you have only a few applications.

In that case it could also reduce the size of your image as no dynamic libraries are needed GNU_HASH: ~ 50%

speed improvement in dynamic linking.

Avoid udev: it takes quite some time to populate the /dev directory. In an embedded system it is often known what

devices are present and in any case you know what drivers are available, so you know what device entries might be

needed in /dev. These should be created statically, not dynamically. mknod is your friend, udev is your enemy.

If your device has a network connection, preferably use static IP addresses. Getting an address from a DHCP server

takes additional time and has extra overhead associated with it.

Moving to a different compiler version might lead to shorter and/or faster code. Most often newer compilers

produce better code. You might also want to play with compiler options to see what works best. If possible move from

glibc to uClibc. This leads to smaller executable and hence to faster load times.

1) Boot loader optimization:

In boot loader source code, lots of configuration file available specific to different platform in “include/configs”.

As I use panda board as a platform. A specific configuration file for this platform is also available which is

“omap4_panda.h”.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1814

So whatever changes we want to do, it should be done in this file.

 Setting Boot delay parameter

By default boot delay defined in the configuration file is 3. We can reduce it to 1 or 0; if we put is 0 then

Auto boot will happen. If we want to change some boot parameter or boot-args then it should be set to 1 and

more. By doing this we save 3.10 second of total boot-time.

 Setting following environment variable

1. Verify

Before execute image is verified. This should be not necessary in small system so we turned off

verification of image by setting environment variable verify to off. By setting this parameter we save 0.05 to

0.06 second.

verify = n

2. Silent

Turning the prints off is a two step process.

Add the following line to board specific configuration.

#define CONFIG_SILENT_CONSOLE 1

Set the environment variable silent to 1.

silent = 1

By setting this parameter we can save 0.02 to 0.04 second.

3. ip_method

This will bypass the kernel Network configuration while still allowing configuring network in user

space.

 ip_method=off

If it is not set then network will be configured during kernel initialization and it take around 7 to 8

second. So by setting this parameter we can save this much of time.

 Removing unnecessary support

U-boot also does some device initialization and it has some devices support.

E.g. if you want all function except of Network support you can write

 #include “config_cmd_all.h”

 #undef CONFIG_CMD_NET

Here we don‟t require USB support so we remove USB support.

Avoid long help text for u-boot commands

 #undef CONFIG_SYS_LONGHELP

By doing this, here we save 0.11 second.

2) Kernel optimization:

After completion of first phase of execution (Boot-loader Phase), at the end of its execution, it call the kernel

image to start kernel during boot process.

Kernel image is a binary image which is generated after compiling the kernel.

Like boot-loader, kernel also contains lots of configuration file specific to platform at following path

“arch/arm/configs/omap2plus_defconfig”.

So we can directly use the configuration file related to our target platform or configure manually using following

commands:

make menuconfig

make xconfig

Kernel contains lots of configuration option e.g. it has several file system support, lot‟s of generic device driver‟s

support, different network protocols and some general configuration. So it depend on me what we require and what

is not.

As we use the panda-board as a target platform. We need to configure kernel for the panda-board. In the kernel

configuration files, it has a configuration file named “omap2plus_defconfig” specific to our platform. So we

configure the kernel using this file and making kernel image by following way:

make omap2plus_defconfig.

make uImage

Because of lot‟s of configurations available in the kernel, the size of the kernel is big or varies according its

configuration. For optimization purposes we require a kernel with the small size. The kernel with its small size

boots faster than with big size.

As we make an FTP server on Panda board. We require only network related stuff not all the options available on

panda board. So we configure the kernel with the smallest configuration which it must require.

We know that small kernel will load faster so we have to reduce the size of kernel as small as possible. Here we try

to reduce the size of kernel by using following technique from the available ones to reduce size.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1815

We use following techniques for kernel optimization:

Fast Kernel Decompression:

We have three decompression techniques available: GZIP, LZO, and LZMA.

The following table show timing for different decompression technique for an optimized kernel.

TABLE 1

COMPRESSION TECHNIQUE‟S RESULTS

Compression Technique
GZIP LZMA LZO

Size(MB) 2 1.5 2.2

Un-compress time(ms) 13.6 10.60 15

Kernel initial Time(ms) 912.55 1463.60 655

Total Time(ms) 926.15 1474.2 670

Disable Console:

Here we disable serial console on which we get the kernel messages. This can be done by defining parameter

“quiet” in kernel command line.

By defining this we save 0.13 to 0.15 second.

Avoiding Calibration Delay:

This is one type of delay which is calculated each time the kernel boot. To avoid this calculation every time we

define “lpj= “, the value which we get first time. So next time when it boot, it doesn‟t require calculating again.

By defining this parameter we save around 200 to 300 millisecond.

Reordering of driver initialization:

In a Linux tree, 54% code of its tree is related to drivers. Similarly a nearly 20% code is related to Architecture

specific and 7% code is related to file system. Here by removing unnecessary driver support or if require taking it

as a module.

By doing this we reduce the size of kernel.

After applying all above techniques we reduce the kernel size from 4.0MB to around 2.2MB which causes the

reduction in time around 1 to 1.5 second.

3) File system optimization:

The kernel initializes devices, mounts the root file system specified by the boot loader as read only, and runs Init

(/sbin/init) which is designated as the first process run by the system (PID= 1). A message is printed by the kernel

upon mounting the file system, and by Init upon starting the Init process.

Init is the father of all processes. Its primary role is to create processes from a script stored in the file /etc/inittab.

This file usually has entries which cause init to spawn gettys on each line that users can log in. It also controls

autonomous processes required by any particular system.

Init's job is "to get everything running the way it should be" once the kernel is fully running. Essentially it

establishes and operates the entire user space. This includes checking and mounting file systems, starting up

necessary user services, and ultimately switching to a user-environment when system start-up is completed.

File system can be made from scratch or we can customize an available minimal file system. We can also make

file system using utility e.g. build root or from the busy-box. Both busy-box generated and build-root generated file

system uses the busy box init. I am using file system generated by build-root.

First we download the minimal file system. Then put it into our board and test it but we don't get console. So we

set the console, e.g. ttyO2 in place of ttyS0 in etc/inittab file again test it also we observe the time consuming

process in it.

It takes more time in following areas:

mounting the file system

A file system which has a small size and type of read only e.g. cramfs, jffs, ubifs has mount faster compared to

other file system e.g. ext3, ext4.

 In etc/fstab file do proper mounting by uncommenting some lines and commenting not require lines.

 By doing this we save 0.5 to 1 second.

In udev daemon

udev is a generic kernel device manager. It runs as a daemon on a Linux system and listens (via Net-link socket)

to events the kernel sends out if a new device is initialized or a device is removed from the system. The system

provides a set of rules that match against exported values of the event and the properties of the discovered device.

While it is possible to run a Linux system without udev, it is not recommended and is usually only done in

mobile or embedded Linux implementations to speed up booting and go easy on memory.

mdev is a light-weight alternative to udev for used in embedded devices. Both handle the creation of device files

in /dev and starting of actions when certain events happen with mdev we observe that it takes less time compared to

udev

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1816

By replacing udev with mdev we save 1.5 to 2.5 second.

Using necessary services:

In systemVinit, it starts some service before login console and after entering run-level. Suppose it enters into

run-level 5 then it execute services defined in rc5 directory. Then swan a getty.

E.g. tarting network, Starting telnet daemon, Starting syslogd/klogd.

Here we can start service specific to our requirement not all services should be started. Here the services which

require immediately after boot can be started during boot so we can use it immediately after login. We can also start

service later means after booting.

As we want to make an FTP server so our networking services should be useable after login. Here we need to

start network services during boot time.

By doing this we save 0.064 to 0.1 second.

Using build-root file system

The file system using build root is generated by following steps

 Download the build root source code.

 Check the board specific configuration file if available then do follow:

 make panda_defconfig

 Otherwise we can configure it manually by following step:

 make menuconfig

 Configure it as our requirement like use busy-box init, use mdev in place of udev , start only necessary

application. Configure and install necessary package require for networking especially for a FTP server

then save the configuration.

 At last compile it by following step:

 make

 After compilation, file system is available at /output/images/rootfs.tar

After whole optimization:

Fig. 3 Linux boot time after optimization (DHCP IP)

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJAREEIE www.ijareeie.com 1817

Fig. 4 Linux boot time after optimization (Static IP)

V. CONCLUSION

From above result and experiments, we conclude that Reduction and Boot Time depends on different reduction

technique which we used for the application. We can even reduce more time by applying more techniques which will

use on different platform. So, finally we say that Reduction in Boot Time is varies by different application.

ACKNOWLEDGEMENT

We thank to our project guide, Mr. Hasteen Patel and Mrs. Ekata Mehul, for providing necessary facilities towards

carrying out this work. We are also very thankful to all our friends (Hardik Sheth, Kalpik Patel, Chirag Patel, Tejas

Patil, Jiju Chako, Samarth Parikh, Shashank Pathak) for all the thoughtful and mind stimulating discussion we had,

which prompted us to think beyond the obvious.

REFERENCES

1. http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html

2. http://www.linuxinsight.com/proc_uptime.html
3. http://planet.linaro.org/tag/boot%20time/

4. http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html

5. http://www.omappedia.com/wiki/4AI.1.4_OMAP4_Icecream_Sandwich_Panda_Notes
6. http://www.thegeekstuff.com/2011/02/linux-boot-process/

7. http://www.ibm.com/developerworks/linux/library/l-linuxboot/index.html

8. http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/ch09s04.html
9. http://elinux.org/Boot_Time

10. http://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time

11. http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch15_:_Linux_FTP_Server_Setup#.UZ8F0loW2li
12. http://free-electrons.com/pub/conferences/2011/genivi/boot-time.pdf

http://www.ijareeie.com/

