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ABSTRACT:The paper is concerned with transformer Weibull lifetime modelling which is recognised as essential for effective 

asset management within electric utilities. Two popular and widely adopted methods, maximum likelihood estimation and median 

rank regression, are discussed and compared for their properties in estimating transformer lifetime data. To greatly mimic the field 

collected transformer lifetime data, Monte-Carlo simulations are conducted to generate multiple sets of transformer lifetime data 

with the censoring rate being set at 90% and sample size chosen as ranging from 60 to 1000. Weibull parameters are estimated for 

each sample set with both methods. Performance of each estimation method is then evaluated with respect to their corresponding 

relative difference between median value and the true value (RD) as well as the relative root mean square error (RRMSE) obtained 

for each sample size. It is found that the maximum likelihood method is superior to the median rank regression method due to the 

fact that it always provides smaller RD as well as RRMSE and is hence recommended to be used for transformer Weibull lifetime 

modelling. 
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I. INTRODUCTION 

Power transformers are generally highly reliable equipment with relative long anticipated lifetimes, e.g. designed life 

expected to be around 40 years [1]. However, as a large number of transformers installed in the loading growth period 

of 1960s and 1970s are approaching or have already exceeded their designed lifetime [2-3], concerns are aroused on 

these large number of aged equipment and their impact on the power network [4]. Although most of the aged 

transformers in service are still in safe operating condition, their future performances are yet unclear. Replacement of 

aged transformers before they reach an unacceptable state has to be made in order to avoid unexpected supply loss. 

Moreover, transformers are capital intensive assets with a long acquisition lead time; currently it takes 15 months or 

more [5]. Forward replacement planning is therefore required. 

All these drive the demand of effective transformer lifetime modelling, for which the general procedure is to choose 

an appropriate statistical distribution function and then determine the parameters of the distribution function using 

collected lifetime data. Statistical distributions are chosen according to their representativeness of equipment’s failure 

characteristics (or more specifically, the general hazard rate versus age relationship).  As specified in [6], early 

mortalities are not obvious for power transformers nowadays; their hazard rate remains constant over some time and 

then exhibit an increasing trend as they age. This can be modelled with two-parameter Weibull distribution with 

different shape parameters.  

To estimate the parameters of the Weibull distribution, various estimation methods have been proposed by different 

authors [7-10]. Among which, maximum likelihood estimation (MLE) method is the most popular in terms of the 

theoretical prospective and the median rank regression (MRR) method is computationally easier to handle and provides 

simple closed form solutions for the estimates. Comparisons between MLE and MRR have been made by some 

researchers [11-14]. These studies, however, resulted in contradictory opinions on the preference of one method over 

the other, as they were conducted with different data generating mechanisms at various censoring levels. It is suggested 

that for application in a specific situation, simulations should be designed to greatly mimic that specific sampling 

scenario based on which optimal method can be chosen. 

This paper therefore discusses and compares MLE and MRR for their properties in estimating transformer lifetime 

data. MLE and MRR are briefly summarized in Section II. After analysing the characteristics of field collected 

transformer lifetime data, Monte Carlo simulations are designed and conducted to simulate multiple sets of transformer 

lifetime as presented in Section III.  Comparisons are then made in terms of the relative difference between the median 

value and the true value (RD) as well as the relative root mean square error (RRMSE) of the estimates. Results are 

presented and discussed in Section IV based on which conclusions are finally drawn. 
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II. WEIBULL DISTRIBUTION AND PARAMETER ESTIMATION METHODS 

A. The Weibull Distribution Function 

Cumulative distribution function (CDF) of the two-parameter Weibull distribution [9] is presented in (1). It’s 

corresponding reliability function (RF), probability density function (PDF) and hazard function (HF) are listed in (2)-

(4), respectively. 
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where 

x is the failure time, expressed as a variable; 

η is the scale parameter or termed as the characteristic lifetime; 

β is the shape parameter. 

A very important characteristic of the two-parameter Weibull distribution is that the value of the shape parameter 

corresponds to the three regions of the bathtub curves as follows 

 β<1 corresponds to region 1 of the bathtub curve, where hazard rate decreases as transformer ages; 

 β=1 corresponds to the region 2 of the bathtub curve, where hazard rate is independent of the time; 

 β>1 corresponds to region 3 of the bathtub curve, representing the relationship that hazard rate increases as 

transformer ages. 

The scale parameter, η, represents the time by which 63.2% of the transformers are expected to have failed. For the 

special case that β=1, the value of η is the same as the mean lifetime of the distribution. 

B. Maximum Likelihood Estimation  

In present days, transformer lifetime data are often collected as incomplete dataset as a large number of units are still 

in safe operating condition.  Maximum likelihood estimation [11] can be adopted to deal with these two types of data. 

Suppose that a set of lifetime data is collected from N transformer units as (X1, X2,…, Xr, Cr+1,Cr+2,…, CN), among 

which the first r units are observed as failure data for whom the event of failure is actually observed, whereas the 

remaining N-r units are survival data for whom the event of failures are not observed yet but only known to be beyond 

the current running times. Likelihood function of this dataset is as follows: 
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Insert RF and PDF of Weibull distribution as shown in (2) and (3) into (5) and then taking the natural logarithm, the 

equation is then transformed as: 
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Taking partial derivative oflnL(η, β) with respect to η and β respectively, and setting the corresponding value as zero, 

we have: 
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By transforming (7) and (8), the estimates of Weibull parameters are found to be solutions of (9) and (10). 
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̂ can be solved with numerical methods, such as the Newton-Raphson method [15]. Once ̂ is determined, ̂ can be 

obtained by taking ̂  into (10). 

C. Median Rank Regression 

To estimate the Weibull parameters, median rank regression [11] linearizes the Weibull data and then performs 

simple linear regression on the transformed data. The basis is the transformation of Weibull CDF; the transformed 

equation is as shown in (11).  

 ln( ln(1 ( ; , ))) ln lnF x x        (11) 

Denoting ln(-ln(1-F(x;η,β))) as y, equation (11) becomes a linear model between y and lnx. In this respect, the 

parameters, i.e. η and β, can be estimated with the least squares procedure as long as the point pairs (lnx, y) are 

determined. Let Li be the ith ordered failure and Yi be the estimate of F(Li). Then the least square equations are 
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For a complete dataset, the CDF F(Li) hence Yi is directly estimated as 
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where N is the total number of the collected lifetime data. 

For an incomplete dataset which is the case for the present study, the rank value, i, in (16) is replaced by the adjusted 

rank defined as: 

 
(Reverse rank) (Previous adjusted rank) (N+1)

Adjusted Rank=
(Reverse rank) 1

 


(17) 

 

III. DESCRIPTION OF THE SIMULATION 

A. Design of the Simulation 

Assume that the failure times of a transformer fleet follow a Weibull distribution with parameters (ηT, βT), termed as 

true values of the distribution. For the ith unit in the transformer fleet, its failure time, Xi(1 ≤i≤N), can be randomly 

sampled from the inverse of the Weibull CDF, as: 
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 1( ; , )i i T TX F U                                                    (18) 

whereUi is a random number. 

The collected lifetime data, Li, for this specific unit is then specified after comparing its failure time, Xi, with a fixed 

censoring time, TC, which is actually the time duration of the observation. The value of Li is determined as: 

 min( , )i i CL X T                                                 (19) 

Equation (19) represents the time censoring process that if Xi<TC, the unit failed at timeXi, whereas ifXi≥TC, the unit 

is censored. 

Repeat the above procedure for N times, a lifetime dataset for a transformer fleet containing N units can be simulated. 

Besides the sample size, N, another important term that helps to characterise the lifetime dataset is the censoring rate, 

CR, defined as the proportion of units being censored. By controlling the censoring time, lifetime datasets of 

transformer fleets with desired CR can be sampled.To greatly mimic the field collected transformer lifetime data, 

controlling parameters for the simulation are chosen as listed in Table I.    

 

TABLE I 

CHOSEN LEVELS OF CONTROLLING PARAMETERS 

Controlling Parameter Parameter Levels 

(ηT, βT) (500, 1); (100, 5) 

N 60; 100; 300; 600; 1000 

TC F-1(0.9; ηT, βT) 

CR 90% 

 

The two pairs of scale and shape parameter are chosen as (500, 1), (100, 5) to reflect utility’s current understanding 

on the distribution of random and ageing-related failures respectively. Sample sizes are chosen to cover a wide range 

from 60 to 1000. The censoring rate, CR, is chosen as 90% to reflect the current situation of field collected transformer 

lifetime data that the censoring rate are normally in the high value range, mostly over 80% [16-19]. 

B. Criteria for the Comparison 

To assess the performance of MLE and MRR, the relative difference between median value and the true value (RD) 

the relative root mean square error (RRMSE), as defined in (20) and (21), for each method were calculated using 10000 

replications of lifetime data for each of the cross-combinations of the controlling parameter levels.  
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where 

θ is the true value of the parameter; 

̂ is the estimated value of the parameter; 
ˆ ˆ( ) ( )Bias E     

ˆ( )SD  is the standard deviation of the estimated parameters. 

RD is chosen to reflect the central tendency of the results, whereas the RRMSE is adopted for the purpose for an 

overall evaluation of the results. The two metrics hence complement each other for an effective evaluation. It is 

expected that the closer the RD and the RRMSE to zero, the higher the accuracy level of the estimated parameters will 

be. Consequently, properties of different parameter estimation methods in estimating the same sets of lifetime data can 

be compared. 

IV. RESULTS AND DISCUSSIONS 

A. Results of Shape Parameter β 

RD and RRMSE of the estimated βs obtained by MLE and MRR are presented together in Fig. 1 and Fig. 2, 

respectively. Results obtained by MLE are plotted as yellow bars, whereas results obtained by MRR are presented as 
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magenta bars. Results obtained while βT=1 and βT=5 are presented in bars filled with different patterns for 

differentiation. This format is maintained throughout this paper. 

 

Fig.1RD of Estimated β in various sample sizes 

 

 

Fig. 2RRMSE of Estimated β in various sample sizes 

As shown in Fig. 1 and Fig. 2, observations made are: 

1)  RD and RRMSE obtained by MLE are always smaller and hence closer to zero than results obtained by MRR in the 

same scenario. This indicates that MLE can provide more accurate result in estimating β compared with MRR. 

2)  RDs obtained by MLE are always in the positive value range, whereas RDs obtained by MRR are always in the 

negative value range. This implies that β tends to be overestimated by MLE whereas underestimated by MRR. 
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3)  The influences of sample size are observed. RDs and RRMSEs are moving closer to zero as the sample size 

increases which indicate that the accuracy of estimated β is improved as the sample size increases. This correlates well 

with the law of large numbers in probability theory.  

4)  The influence of true β value is not observed in estimating β, the same accuracy level of estimated β is hence 

maintained throughout different βT. No difference of RD between the case of βT=1 and βT=5 is observed for both MLE 

and MRR, as shown in Fig. 1. So is the RRMSE, as shown in Fig. 2. 

B. Results of Scale Parameter η 

RD and RRMSE of the estimated ηs obtained by MLE and MRR are presented together in Fig. 3 and Fig. 4, 

respectively. The same format as part A is maintained. 

 

Fig. 3RD of Estimated η in various sample sizes 

 

Fig. 4RRMSE of Estimated η in various sample sizes 

According to Fig. 3 and Fig. 4, the following facts are observed.  

1)  Comparing with results obtained by MRR, MLE always provide closer to zero RD and RRMSE. This indicates that 

MLE can provide more accurate result in estimating η. 
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2)  η tends to be underestimated by MLE but overestimated by MRR as shown in Fig. 3 that RDs obtained by MLE are 

always negative whereas RDs obtained by MRR are always positive.  

3)  Influence of sample size for estimating η with MLE is clearly observed that both RD and RRMSE decrease as 

sample size increases. For estimating with MLE, the law of large numbers is followed. The influence of sample size for 

estimating with MRR, however, is not that straight-forward. Though the same trend is observed in RRMSE, exceptions 

are found in RD that values obtained when N=60 are lower than values obtained when N=100, which violates the law 

of large numbers.  

4)  The influence of true β in estimating η is observed. Same accuracy level of estimatedη hence cannot be reached with 

different βT. The general trend found is that estimated ηs are expected to be more accurate for dataset collected from 

distribution with higher βT value as it is observed that RDs and RRMSEs obtained in the case of βT=5 are generally 

lower than these values obtained in the corresponding case of βT=1. 

V. CONCLUSION 

Two popular Weibull parameter estimation methods, maximum likelihood estimation (MLE) method and median 

rank regression (MRR)method are evaluated and compared in terms of their properties to deal with transformer lifetime 

data. Extensive Monte Carlo simulations were conducted so that corresponding evaluation metrics, the relative 

difference between the median value and true value (RD) as well as the relative root mean square error (RRMSE) for 

the two methods are obtained. Results show that the shape parameter of the Weibull distribution tends to be 

overestimated with MLE but underestimated with MRR. The scale parameter of the Weibull distribution tends to be 

underestimated with both methods. Overall comparison show that MLE is superior to MRR as it always provides lower 

RD and RRMSE for both estimated shape parameters and scale parameters. MLE is hence recommended to be adopted 

over MRR for transformer Weibull lifetime modelling. 
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