

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 847

 Smart Home Automation Using IoT

S.Aravindan, S.Dharani, V.Gokulakrishnan, D.Jayaseeli, K.Dinakaran

IV ECE, Department of Electronics and Communication Engineering, Jai Shriram Engineering College , Tirupur,

Tamil Nadu, India1,2,3,4

Assistant Professor, Department of Electronics and Communication Engineering, Jai Shriram Engineering College,

Tirupur, Tamil Nadu, India5

ABSTRACT: In this paper we discuss and create a MQTT based Secured home automation system, by using
temperature sensors and using ESP8266model as the network gateway, here we have implemented MQTT Protocol for
transferring & receiving sensor data and finally getting access to those sensor data, also we have implemented ACL
(access control list) to provide encryption method for the data and finally monitoring those data on webpage or any
network devices. ESP8266 has been used as a gateway or the main server in the whole system, which has various
sensor connected to it via wired or wireless communication.

KEYWORDS: Message Queuing Telemetry Transport (MQTT), ESP8266, Mosquitto, Home automation

I. INTRODUCTION

Home automation refers to remotely monitoring the condi-tions of home and performing the required actuation.
Through home automation, household devices such as TV, light bulb, fan, etc. are assigned a unique address and are
connected through a common home gateway. These can be remotely accessed and controlled from any PC, mobile or
laptop. This can drastically reduce energy wastage and improve the living conditions besides enhancing the indoor
security.

Owing to the rapid growth in technology, the devices in the recent past are becoming smart. The real world devices are
being equipped with intelligence and computing ability so that they can configure themselves accordingly. Sensors
connected to embedded devices along with the low power wireless connectivity is facilitates to remotely monitor and
control the devices. This forms an integral component of Internet of Things(IoT) network. Internet of Things can be
considered as a network of devices that are wirelessly connected so that they communicate and organize themselves
based on the predefined rules. However these devices are constrained in terms of their resources. Hence light weight
protocols such as MQTT, CoAP etc. are used for the data transmission over wireless connectivity. There are so many
kinds of radio modules out of which GSM, 3G, WiFi, Bluetooth, Zigbee, etc. are common. However, owing to the
surging number of WiFi hotspots and range sufficient to perform the required to control and monitoring, WiFi is
choosen as the mode of communication in the prototype and the devices are controlled through MQTT protocol
implemented using ESP8266.

Organization of the paper is as follows: A brief overview about the MQTT protocol is presented in section II. The
related work that has already been done in this area is discussed in section III. In section IV the implementation details
about the network setup, hardware and software used is briefed. Results from developed prototype are discussed in
section V. Section VI presents the conclusions and future scope of work.

MESSAGE QUEUING TEEMENTARY TRANSPORT

Message Queuing Telemetry Transport (MQTT) is a light weight transport protocol that efficiently uses the network
bandwidth with a 2 byte fixed header [1]. MQTT works on TCP and assures the delivery of messages from node to the
server. Being a message oriented information exchange protocol, MQTT is ideally suited for the IoT nodes which have limited

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 848

capabilities and resources. MQTT was initially developed by IBM [2] in 1999 and recently has been recognized as standard by
Organization for the Advancement of Structured Information Standards (OASIS) [3].

MQTT is a publish/subscribe based protocol. Any MQTT connection typically involves two kinds of agents: MQTT clients and
MQTT public broker or MQTT server. Data that is being transported by MQTT is referred to as application message. Any device or
program that is connected to the net-work and exchanges application messages through MQTT is called as an MQTT client. MQTT
client can be either publisher or subscriber. A publisher publishes application messages and subscriber requests for the application
messages. MQTT server is a device or program that interconnects the MQTT clients. It accepts and transmits the application
messages among multiple clients connected to it. Devices such as sensors, mobiles etc. are considered as MQTT client. When an
MQTT client has certain information to broadcast, it publishes the data to the MQTT broker. MQTT broker is responsible for data
collection and organization. The application messages that are published by MQTT client is forwarded to other MQTT clients that
subscribe to it. MQTT is designed to simplify the implementation on client by concentrating all the complexities at the broker.
Publisher and subscriber are isolated, meaning they need not have to know the existence or application of other.

 Before transmitting the application messages, control packets are exchanged based on the QoS associated with them. An MQTT
control packet consists of a fixed header, a vari-able header and payload. CONNECT, CONNACK, PUBLISH, PUBACK,
PUBREC, PUBREL, SUBSCRIBE, SUBACK, etc. are some of the MQTT control packets [4] exchanged between MQTT clients
and MQTT server. ”Topic” in MQTT provide the routing information. Each topic has a topic name and topic levels associated with
it. There may be multiple topic levels separated by / in a topic tree. Wildcard characters such as # and + are used to match multiple
levels in a topic. Featuring the queuing system, MQTT server buffers all the messages if client is offline and delivers them to the
client when the session is enabled.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 849

A. Establishing a connection

Upon the successful establishment of network between the MQTT client and the MQTT server, control packets are exchanged
between the client and the server. The client that wishes to connect to the MQTT server sends a CONNECT packet to the server
specifying its identifier, flags, protocol level and other fields. The server acknowledges the client with the specified identifier
through CONNACK packet with a return code denoting the status of connection.

B. Publishing the application messages

If the client desires to be a publisher, it sends a PUBLISH packet to the server. This packet contains details about the QoS level of
transmission, topic name, payload, etc. MQTT supports three levels of Quality of Service (QoS) [5] to the client. If the application
messages are transmitted at QoS 0, the client does not receive any acknowledgment for the published packet. For QoS 1, the server
acknowledges the

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 850

published packet with PUBACK including the packet iden-tifier. However in QoS 2, four packets are exchanged. The server
acknowledges the receipt of PUBLISH packet with the PUBREC packet. MQTT client then sends a packet to release publish with a
PUBREL packet. The server then sends the fourth packet PUBCOMP, indicating the completion of publishing the application
message on the given topic.

C. Subscribing to a topic

If the MQTT client want to subscribe to the application messages published on topic, it sends the SUBSCRIBE packet along with
the topic name indicated in UTF-8 encoding. The server acknowledges the subscription with SUBACK packet along with a return
code denoting the status of request. Once the subscription is successful, the application messages on the specified topic are
forwarded to the client with the maximum QoS. To unsubscribe a topic, the client sends an UNSUBSCRIBE packet to the server
which acknowledges it with the UNSUBACK packet.

D. Maintaining the connection alive

After a certain time-out, the connection between the client and the server is terminated. To maintain the connection, the client
indicates that it is alive by transmitting a PINGREQ packet to the server. The MQTT server responds to the client with the indicated
identifier with a PINGRESP packet and maintains the connection alive.

E. Terminating the connection

To terminate the connection, the MQTT client sends a DISCONNECT packet to the server. The server does not acknowledge this
packet. However all the application messages related to the client will be flushed off and the client is disconnected from the server.

RELATED WORK

In [6], the authors discussed about the existing architectures for home automation and proposed a novel home automation
architecture giving space to all the new IoT protocols. In [7], a prototype is designed to perform home automation through SMS.
GSM network and the devices are bridged using a micro-controller. It also focuses on the security aspects in the networking and

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 851

proposes a secure, reliable and adaptable home automation system. The research work done in [8] proves that MQTT is better than
HTTP for the nodes with constrained resources. It has been proven that data transmission through MQTT consumes only about
0.05% of battery/hour by using 3G for network connectivity.

 IMPLEMENTATION DETAILS

A. Network setup

The intensity of light is sensed using LDR sensor connected to ESP8266 development board. ESP8266 development board
processes the sensor data and performs actuation. It acts as a gateway for data transmission through WiFi. ESP8266 is configured as
MQTT client publishing the sensor data to the MQTT broker and subscribing for the commands to control the actuation. LED and
buzzer is used as actuators in the prototype. ESP8266 module publishes the sensor data under the topic ′esp\sense′. It subscribes for
the topic ′esp\led′ and ′esp\buzzer′ to receive commands to control LED and

Fig. 4.Message transmission through MQTT

Fig. 5.Network Setup

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 852

buzzer connected to the GPIOs of ESP8266. MQTT mosquitto broker is set up for ESP8266 to publish and subscribe to
the application messages. Other MQTT clients such as PCs and Mobiles can connect to MQTT server through existing
communication technologies such as Ethernet, 2G, 3G, WiFi etc

Fig. 6. ESP8266 based NodeMCU development board

B. ESP8266

ESP8266 [9] is a low cost development board that
consol-idates GPIOs, I2C, UART, ADC, PWM and
WiFi for rapid prototyping. Powered by 3.3V supply,
ESP8266 together with voltage regulator and USB to
serial is packaged as ESP-12 module. Applications
can be developed on this board through Arduino IDE
or Lua based ESPlorer.

C. Software setup

Arduino IDE is used to program the ESP8266 module as MQTT client. Mosquitto [10], an open source MQTT
broker is implemented on Windows PC. It uses two services mosquittoPub and mosquittoSub to publish and subscribe to
the application messages. MQTT broker is set up with the bro-ker URL of the host IP of the PC on which Mosquitto
broker is installed on port 1883. MQTTLens [11], a Google Chrome based application is used as MQTT client that
subscribes for the sensor data and publishes the commands to control GPIOs of ESP8266. This sniffs the application
messages that is being transmitted between Mosquitto MQTT broker and ESP8266. MyMQTT, an android application
is also another MQTT client that connects to the Mosquitto MQTT broker and publishes or subscribes to a topic.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 8, Issue 3, March 2019

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2019.0803093 853

V. RESULTS AND DISCUSSION

MQTT server is set-up using Mosquitto. Upon setting up of the server and starting the service, the pub/sub of
applica-tion messages can be viewed on the command prompt. Any authorized MQTT client can publish or subscribe
to the data onto this server with the ID of its host IP and port 1883. The sensor data is aggregated by ESP8266 module
and published to the MQTT broker on the topic ′esp/sense′. Any MQTT client subscribed to this topic can view the
sensor readings. LED and Buzzer connected to ESP8266 can be turned ON and OFF by publishing suitable control
commands on appropriate topics. The exchanged MQTT messages are grasped through MQTTLens and MyMQTT
android application. Multiple ac-tuators can be controlled by using wild cards (+ or #) at the same time.

VI. CONCLUSION AND FUTURE WORK

MQTT is thus a light weight protocol that occupies low bandwidth and consumes less power. Considering the ease

Fig. 7.Application UI on MyMQTT Android application

of wireless internet access through WiFi, MQTT client ap-plication is built on ESP8266. A prototype of MQTT based
home automation system is implemented on ESP8266. The sensors and actuators connected to ESP8266 are remotely
monitored and controlled through a common home gateway. Thus the existing infrastructure can be used to enhance the
home appliances and make them smart. This implementation provides an intelligent, comfortable and energy efficient
home automation system. It also assists the old and differently abled persons to control the appliances in their home in
a better and easier way.

http://www.ijareeie.com

