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ABSTRACT: In this paper, a nonlinear controller has been presented for a 3-axis Micro-Electro-Mechanical System 

(MEMS) gyroscope subject to uncertain parameters or dynamics and external disturbances. Considering that some state 

variables may be unavailable for the controller’s operation, a model-free high-gain state observer is used to generate an 

estimation of the state vector. The controller uses an approximation of the MEMS dynamics provided by a Fuzzy Neural 

Network (FNN) by exploiting its universal approximation theorem. The nonlinear control law uses some dynamic 

parameters tuned online to cancel the adverse effects of external disturbances and FNN approximation errors. Update 

rules for these parameters and the FNN weights are designed. A stability analysis is performed, using the Lyapunov’s 

method, to prove the stability of the closed-loop system with the proposed control scheme. Numerical simulation results 

obtained using MATLAB/SIMULINK are presented to demonstrate the good performance of the 3-axis MEMS 

gyroscope controller.    
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I. INTRODUCTION 

Thanks to the fast development of micro and nanotechnologies, Micro-Electro-Mechanical System (MEMS) gyroscopes 

are being widely considered in control and measurement systems for their small size, low cost, and low power 

consumption [1-5]. MEMS gyroscopes are used for angular velocity measurement in a wide range of applications in 

different fields like aerospace, aviation, navigation (GPS-assisted inertial navigation), biotechnology, automotive 

(stability control and GPS), medicine, consumer electronics (camera image stabilization and 3-D mouse), etc. [2, 6-8]. 

MEMS gyroscopes pose unique measurement and control problems due to their small size, low cost and low power 

consumption [1]. In many applications of MEMS gyroscopes, accuracy is required in the tracking of a chosen reference 

trajectory despite fabrication imperfections, unknown time varying parameters, non-measurable state variables and 

external disturbances.  

In order to ensure good performances for MEMS gyroscopes, despite the aforementioned perturbations, multiple robust 

and adaptive control algorithms have been proposed. Many of these control schemes use intelligent systems like fuzzy 

logic systems for their very good ability of approximating unknown dynamics [2, 3]. 

An adaptive fuzzy sliding mode sliding mode controller has been developed in [4] for MEMS triaxial gyroscopes subject 

to uncertain dynamics and external disturbances. The proposed controller uses an adaptive identification scheme 

combined with sliding mode control (SMC), which can identify angular velocity along with other system parameters. 

Upper and lower bounds of uncertainties and external disturbances are approximated based on Lyapunov methods.  

An adaptive fuzzy control approach for electrostatically actuated MEMS subject to uncertain dynamics and unavailable 

state measurements has been proposed in [5]. The authors used differential theory and output feedback for the controller’s 

design. A fuzzy neural network (FNN) was used to find an approximation of the unknown dynamics. A state observer 

was used to estimate the state vector needed for the controller’s operation. 

The control problem of micro-gyroscope systems has been addressed in [6] by considering fabrication imperfections, 

time varying system parameters, and external disturbances. The authors proposed an adaptive fuzzy SMC, which 

synchronously tackles the aforementioned issues.  

Authors of [7] have proposed an adaptive controller for MEMS gyroscope by combining dynamic surface control, SMC 

and fuzzy logic. This fuzzy system has been used to approximate the dynamic characteristics of the gyroscope, while the 

SMC was used to compensate fuzzy approximation error.  
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An adaptive fuzzy terminal SMC has been introduced in [8] for the MEMS gyroscope by considering the presence of 

external disturbances and model uncertainties. The scheme uses an extended Kalman filter to estimate nonlinear dynamics 

affected by noise. 

Authors of [9] have proposed a MEMS gyroscope adaptive global sliding mode fuzzy controller using radial basis 

function neural network (RBFNN) and the backstepping technique. The RBFNN is used to approximate the unknown 

dynamics, while the fuzzy controller is used to suppress the chattering phenomenon related to SMC. 

In order to deal with state measurement issues, a backstepping controller with an adaptive neural states observer was 

proposed in [10] for MEMS gyroscopes subject to external disturbances and model uncertainties.  

 

In this paper, an adaptive controller is proposed, which combines a FNN, a nonlinear control scheme and a model-free 

state observer. The key contribution of this paper is that, unlike for the aforementioned published works, which mostly 

focus on 2-axis MEMS gyroscopes, a new nonlinear control algorithm is developed for a MEMS gyroscope capable of 

sensing angular motion about three axes simultaneously (3-axis MEMS gyroscope). The proposed scheme is able to 

tackle simultaneously issues related to unavailable full state measurement, external disturbances and uncertain system 

parameters. Considering the unavailability of the system’s dynamics, a model-free high gain state observer is designed 

and used to provide an accurate estimate of the MEMS state vector. A FNN is used to provide an approximation of the 

unknown dynamics to be used in a nonlinear adaptive control scheme. Time varying parameters are incorporated in the 

design such that they are adjusted online to compensate the adverse effects of external disturbances and FNN 

approximation errors. This is important as no prior knowledge of upper bounds for these perturbations is needed, unlike 

for other control schemes where this requirement has been undermined (see for instance in [1, 6-8, 11] and references 

therein). The learning rule for the FNN and the adaptive parameters are derived using Lyapunov’s methods. Another 

important contribution is that the proposed controller guarantees very good tracking accuracy. 

This paper is organized as follows: Section II gives the model of a 3-axis MEMS gyroscope and states the control 

problem. In section III the FNN and observer-based nonlinear control strategy is presented and a stability analysis is 

provided. Numerical simulation results are presented in section IV and finally the paper ends with a conclusion. 

 

II. PROBLEM STATEMENT 

A typical MEMS gyroscope is made of a proof mass suspended to a rigid frame by springs and dampers, a sensing 

mechanism and an electrostatic actuation for forcing an oscillatory motion. 

By considering that the gyroscope is moving at a constant linear speed and rotating at a constant angular velocity, and by 

assuming that centrifugal forces are negligible because of small displacement, the dynamics of a MEMS gyroscope 

undergoing rotations along 𝑥, 𝑦 and 𝑧 axis is as follows [4]: 

 

𝑚𝑥̈ + 𝑑𝑥𝑥 𝑥̇ + 𝑑𝑥𝑦𝑦̇ + 𝑑𝑥𝑧𝑧̇ + 𝑘𝑥𝑥𝑥 + 𝑘𝑥𝑦𝑦 + 𝑘𝑥𝑧𝑧 = 𝑢𝑥 + 2𝑚Ω𝑧𝑦̇ − 2𝑚Ω𝑦 𝑧̇  

𝑚𝑦̈ + 𝑑𝑥𝑦𝑥̇ + 𝑑𝑦𝑦𝑦̇ + 𝑑𝑦𝑧𝑧̇ + 𝑘𝑥𝑦𝑥 + 𝑘𝑦𝑦𝑦 + 𝑘𝑦𝑧𝑧 = 𝑢𝑦 + 2𝑚Ω𝑥𝑧̇ − 2𝑚Ω𝑧𝑥̇                     (1) 

𝑚𝑧̈ + 𝑑𝑥𝑧𝑥̇ + 𝑑𝑦𝑧𝑦̇ + 𝑑𝑧𝑧𝑧̇ + 𝑘𝑥𝑧𝑥 + 𝑘𝑦𝑧𝑦 + 𝑘𝑧𝑧𝑧 = 𝑢𝑧 + 2𝑚Ω𝑦𝑥̇ − 2𝑚Ω𝑥𝑦̇  

 

where 𝑚 is the mass of proof mass, which can be known exactly; 𝑥, 𝑦 and 𝑧 are the coordinates of the proof mass with 

respect to the gyro frame in a Cartesian coordinate system; 𝑘𝑥𝑦, 𝑘𝑥𝑧 and 𝑘𝑦𝑧 are asymmetric spring stiffness terms due 

to fabrication imperfections; 𝑑𝑥𝑦 , 𝑑𝑥𝑧 and 𝑑𝑦𝑧 are asymmetric damping factors due to fabrication imperfections; 𝑘𝑥𝑥, 𝑘𝑦𝑦 

and 𝑘𝑧𝑧 are the spring stiffness terms in the 𝑥, 𝑦 and 𝑧 direction, respectively; 𝑑𝑥𝑥, 𝑑𝑦𝑦 and 𝑑𝑧𝑧 are the damping factors 

in the 𝑥, 𝑦 and 𝑧 direction, respectively; Ω𝑥, Ω𝑦 and Ω𝑧 are the angular velocities in the 𝑥, 𝑦 and 𝑧 direction, respectively; 

𝑢𝑥, u𝑦 and 𝑢𝑧 are the control forces in the 𝑥, 𝑦 and 𝑧 direction, respectively. 

Let us divide Eq. (1) by 𝑚 and rewrite it as follows: 

 

𝒒̈ +
𝑫

𝑚
𝒒̇ +

𝑲𝒂

𝑚
𝒒 =

𝒖

𝑚
− 2𝛀𝒒̇                                      (2) 

where 𝒒 = [𝑥 𝑦 𝑧]𝑇, 𝒖 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 , 𝑫 = [

𝑑𝑥𝑥 𝑑𝑥𝑦 𝑑𝑥𝑧

𝑑𝑥𝑦 𝑑𝑦𝑦 𝑑𝑦𝑧

𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑧𝑧

], 𝑲𝒂 = [

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧

𝑘𝑥𝑦 𝑘𝑦𝑦 𝑘𝑦𝑧

𝑘𝑥𝑧 𝑘𝑦𝑧 𝑘𝑧𝑧

] and      
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 𝛀 = [

0 −Ω𝑧 Ω𝑦

Ω𝑧 0 −Ω𝑥

−Ω𝑦 Ω𝑥 0
]. Using non-dimensional time 𝑡∗ = 𝜔0𝑡 and dividing both sides of Eq. (2) by 𝑚, 𝑞0 (reference 

length) and 𝜔0 (natural resonance frequency) yields the non-dimensional equation of motion as follows: 

 
𝒒̈

𝒒𝟎
+

𝑫

𝒎𝝎𝟎

𝒒̇

𝒒𝟎
+

𝑲𝒂

𝒎𝝎𝟎
𝟐

𝒒

𝒒𝟎
=

𝒖

𝒎𝝎𝟎
𝟐𝒒𝟎

− 2
𝛀

𝝎𝟎

𝒒̇

𝒒𝟎
         (3) 

 

Let us define a set of new variables as follows: 

𝑞∗ = 𝑞/𝑞0, 𝐷∗ =
𝐷

𝑚𝜔0
, Ω∗ =

Ω

𝜔0
, 𝑢∗ =

𝑢

𝑚𝜔0
2𝑞0

, 𝜔𝑥 = √
𝑘𝑥𝑥

𝑚𝜔0
2, 𝜔𝑦 = √

𝑘𝑦𝑦

𝑚𝜔0
2, 𝜔𝑧 = √

𝑘𝑧𝑧

𝑚𝜔0
2, 𝜔𝑥𝑦 =

𝑘𝑥𝑦

𝑚𝜔0
2, 

𝜔𝑦𝑧 =
𝑘𝑦𝑧

𝑚𝜔0
2, 𝜔𝑥𝑧 =

𝑘𝑥𝑧

𝑚𝜔0
2. 

These new variables are used in Eq. (3). For the sake of clarity, let us ignore the superscript (∗) and rewrite the non-

dimensional equation of motion as follows: 

 

𝒒̈ + 𝑫𝒒̇ + 𝑲𝒃𝒒 = 𝒖 − 𝟐𝛀𝒒̇ − 𝒅(𝑡)          (4) 

 

where 𝑲𝒃 = [

𝜔𝑥
2 𝜔𝑥𝑦 𝜔𝑥𝑧

𝜔𝑥𝑦 𝜔𝑦
2 𝜔𝑦𝑧

𝜔𝑥𝑧 𝜔𝑦𝑧 𝜔𝑧
2

] and 𝒅(𝑡) = [𝑑1(𝑡) 𝑑2(𝑡) 𝑑3(𝑡)]𝑇 is the vector of external disturbances. 

 

Remark 1: It is considered that the MEMS gyroscope parameters 𝐷, 𝐾𝑏 and Ω are unknown, the velocity vector 𝑞̇ 

measurement is unavailable, and the external disturbances 𝑑(𝑡) are unknown. 

 

The objective for the MEMS gyroscope is to maintain the proof mass oscillating in 𝑥, 𝑦 and 𝑧 directions at frequencies  

𝜔1, 𝜔2 and 𝜔3 and at amplitudes 𝑋𝑚, 𝑌𝑚 and 𝑍𝑚, respectively. This desired trajectory can be stated as  

𝒒𝒎 = [𝑥𝑚 𝑦𝑚 𝑧𝑚]𝑇, 𝑥𝑚 = 𝑋𝑚 sin(𝜔1𝑡), 𝑦𝑚 = 𝑌𝑚 sin(𝜔2𝑡) and 𝑧𝑚 = 𝑍𝑚, sin(𝜔3𝑡). The objective is to design a 

controller that will provide 𝒖𝜖ℝ3 to ensure the system’s state vector 𝒒(𝑡) tracks the desired state 𝑞𝑚(𝑡) with accuracy 

despite the external disturbances 𝒅(𝑡), the unavailable velocity 𝒒̇ measurements and the unknown system parameters (𝑫, 

𝑲𝒃 and 𝛀). 

 

III. OBSERVER AND FNN BASED NONLINEAR CONTROLLER DESIGN  

III.1. HIGH GAIN STATE OBSERVER DESIGN 

As stated in Remark 1, the position vector 𝒒 is available while the velocity vector 𝒒̇ is unavailable. These two vectors are 

essential for the controller’s operation. In this paper, we choose to use a high-gain state observer that will provide an 

accurate estimate 𝒒̇̂ = [𝒙̇ 𝒚̇̂ 𝒛̇̂]
𝑻
 of the velocity vector. 

Let us rewrite Eq. (4) in its state-space form as follows: 

 

{𝑿̇ = 𝑨𝑿 + 𝒇(𝑿, 𝒖)

𝒀 = 𝑪𝑿                   
            (5) 

 

where 𝑿𝑻 = [𝑿𝟏 𝑿𝟐 𝑿𝟑] is the state vector with 𝑿𝟏 = [𝑥 𝑥̇]𝑇, 𝑿𝟐 = [𝑦 𝑦̇]𝑇 and 𝑿𝟑 = [𝑧 𝑧̇]𝑇; 𝒀 = [𝑥 𝑦 𝑧]𝑇 

is the system’s output vector. 

 

 𝒇(𝑿, 𝒖) = −𝑩[(𝑫 + 𝟐𝛀)𝒒̇ + 𝑲𝒃𝒒 − 𝒅(𝒕) − 𝒖]         (6)  
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For 𝑖 = 1, 2, 3 𝑨 = 𝐝𝐢𝐚𝐠[𝑨𝟏 𝑨𝟐 𝑨𝟑] with 𝑨𝒊 = [
0 1
0 0

], 𝑩 = 𝐝𝐢𝐚𝐠[𝑩𝟏 𝑩𝟐 𝑩𝟑] with 𝑩 = [
𝟎
𝟏

], and 𝑪 =

𝐝𝐢𝐚𝐠[𝑪𝟏 𝑪𝟐 𝑪𝟑] with 𝑪𝒊 = [1 0] such that 𝑵 = [𝑪𝑻: 𝑨𝑻𝑪𝑻: (𝑨𝑻)𝟐𝑪𝑻: (𝑨𝑻)𝟑𝑪𝑻: (𝑨𝑻)𝟒𝑪𝑻: (𝑨𝑻)𝟓𝑪𝑻:] is a 

full rank matrix; therefore the system is fully observable.  

 

Assumption 1 [18-23]: The nonlinear vector field 𝒇(𝑿, 𝒖) is bounded with respect to its arguments on a compact set 

Δ ⊂ ℝ3 over which the state vector 𝑋 ∈  ℝ6 is bounded and the control action 𝒖 ∈ ℝ3 is restricted to the class of 

admissible control forces 𝑼 ∈ ℝ3; therefore, there exist a positive scalar valued function 𝝆(𝑿, 𝒖) such that ‖𝒇(𝑿, 𝒖)‖ ≤
‖𝑷‖−𝟏𝝆(𝑿, 𝒖) ∀𝑿 ∈ ℝ𝟔 and ∀𝒖 ∈ ℝ𝟑, with 𝑷 = 𝑷𝑻 > 𝟎.  

 

In order to design the state observer, we must consider the fact that the system’s dynamics is not available and that the 

only available information is the position vector 𝒒. Thus, this must be a model-free observer that does not involve the 

MEMS dynamics in its implementation and for which the input is the MEMS output vector 𝒚. Let us design the observer 

such that its state vector 𝑿̂ will converge asymptotically towards 𝑿, i.e. lim
𝑡→∞

(𝑿̂ − 𝑿) = 0. We use a model-free high-gain 

state observer modelled as follows: 

 

{
𝑿̇̂ = 𝑨𝑿 + 𝑳(𝒀 − 𝒀̂)

𝒀̂ = 𝑪𝑿̂                       
            (7) 

 

with 𝑳 = 𝐛𝐥𝐨𝐜𝐤 − 𝐝𝐢𝐚𝐠[𝑳𝟏 𝑳𝟐 𝑳𝟑] being the time-varying high-gain observer matrix where 𝑳𝒊
𝑻 =

[𝑘𝑖,1 𝜎(𝑡)⁄ 𝑘𝑖,2 𝜎2(𝑡)⁄ ] for which 𝑘𝑖,1 and 𝑘𝑖,2 have to be chosen such that the polynomial 𝑝2 + 𝑘𝑖,1𝑝 + 𝑘𝑖,1 = 0 is 

Hurwitz and the time varying parameter 𝜎(𝑡) ∈ ℝ+ is selected as follows [12]: 

 

𝜎(𝑡) =
1+exp(−50𝑡)

800[1−exp(−50𝑡)]
                       (8) 

 

Defining the state estimation error as 𝑿̃ = 𝑿 − 𝑿̂ and using Eqs. (5) and (7) we obtain: 

 

𝑿̇̃ = 𝑿 − 𝑿̇̂                                                          (9) 

    = 𝑨𝟎𝑿̃ + 𝒇(𝑿, 𝒖)  

 

where the matrix 𝑨𝟎 = (𝑨 − 𝑳𝑪) has all its Eigen values with negative real parts. 

 

To check the convergence property of the high-gain state observer, let us use the following candidate Lyapunov’s 

function: 

𝑉 =
1

2
𝑿̃𝑻𝑷𝑿̃                                (10) 

 

where 𝑷 = 𝑷𝑻 > 𝟎 ∈ ℝ6×6 is the solution of the Riccati algebraic equation given as follows: 

 
𝑨𝟎

𝑻𝑷 + 𝑷𝑨𝟎 = −𝑸                      (11)  

 

for a given value of 𝑸 = 𝑸𝑻 > 𝟎 ∈ ℝ6×6. Considering assumption 1and Eq. (10) in the derivative of the Lyapunov’s 

function with respect to time we obtain 

 

𝑉̇  =
1

2
𝑿̇̃𝑻𝑷𝑿̃ +

𝟏

𝟐
𝑿̃𝑻𝑷𝑿̇̃  

     =
𝟏

𝟐
𝑿̃𝑻(𝑨𝟎

𝑻𝑷 + 𝑷𝑨𝟎)𝑿̃ + 𝑿̃𝑻𝑷𝒇(𝑿, 𝒖)          

      = −
𝟏

𝟐
𝑿̃𝑻𝑸𝑿̃ + 𝑿̃𝑻𝑷𝒇(𝑿, 𝒖)           (12) 

       ≤ −
𝟏

𝟐
𝑿̃𝑻𝑸𝑿̃ + ‖𝑿̃‖‖𝑷‖‖𝒇(𝑿, 𝒖)‖  
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       ≤ −
𝟏

𝟐
𝑿̃𝑻𝑸𝑿̃ + ‖𝑿̃‖𝜌(𝑋, 𝑢)   

       ≤ −
𝟏

𝟐
𝜆𝑚𝑖𝑛(𝑸)‖𝑿̃‖

𝟐
+ ‖𝑿̃‖𝜌(𝑋, 𝑢)  

 
where  𝜆𝑚𝑖𝑛(𝑸) is the smallest eigenvalue of  𝑸. Thus, whenever ‖𝑿̃‖ is outside the region bounded by ‖𝑿̃‖ ≤

2𝜌(𝑿, 𝒖) 𝜆𝑚𝑖𝑛(𝑸) ⁄ we have 𝑉̇ ≤ 0. Hence, according to Barbalat’s lemma, ∀𝑡 ≥ 0, lim
𝑡→∞

(𝑿 − 𝑿̂) = 0, which mean that 

the observer has a good convergence property, and that 𝑿̂ is guaranteed to be bounded in the compact set ∆. This good 

convergence property is illustrated in Fig. 2 (given in section IV). 

 

III.2. CONTROLLER DESIGN 

 

Let us recall that in this paper we consider that the 3-axis MEMS gyroscope’s parameters are unknown; hence the vector 

function given by: 

 

 𝒇(𝒒, 𝒒̇) = [(𝑫 + 𝟐𝛀)𝒒̇ + 𝑲𝒃𝒒]                                    (13) 

 

is unknown, while it may be required for the controller’s good operation. It is worth mentioning that the external 

disturbance’s vector 𝒅(𝒕) upper bound is unknown as well. As full state measurement is unavailable, the high-gain 

observer states (𝒒̂, 𝒒̇̂) will be used for the controller’s operation. 

To deal with the unknown dynamics issue, let us approximate the vector function of the approximate state vector, i.e. 

𝒇(𝒒̂, 𝒒̇̂). Considering that the state vector 𝑿̂ remains bounded over the compact set ∆∈ ℝ6 for all 𝑡 > 0, we exploit the 

universal approximation theorem related to FNN. It has been shown in the literature that FNN are able to approximate 

any function defined on a compact set ∆ to arbitrary accuracy [11, 16, 18].  

Thanks to a FNN using a center-of-gravity defuzzification method, the approximation of the vector function can be 

computed as 𝒇̂(𝒒̂, 𝒒̇̂) = [𝒇𝟏 𝒇𝟐 𝒇𝟑]𝑇 where, for 𝑖 = 1, 2, 3, we have: 

 

𝑓𝑖(𝑿𝒆𝒊|𝜽̂𝒊) =
∑ 𝜃̂𝑖,𝑗(𝑡)(∏ 𝜇

𝐴
𝑙
𝑗(𝑋𝑒𝑖,𝑙)𝑘

𝑙=1 )𝑛
𝑗=1

∑ (∏ 𝜇
𝐴

𝑙
𝑗(𝑋𝑒𝑖,𝑙)𝑘

𝑙=1 )𝑛
𝑗=1

                       (14) 

                         = 𝜃̂𝑖
𝑇(𝑡)𝜑(𝑿𝒆𝒊)  

 

In Eq. (14), 𝑛 is the number of fuzzy rules, 𝑘 is the length of the FNN’s 𝑖th input vector 𝑿𝒆𝒊 defined in this paper as 

𝑿𝒆𝟏 = [𝑥𝑚 − 𝑥̂ 𝑥̇𝑚 − 𝑥̇̂], 𝑿𝒆𝟐 = [𝑦𝑚 − 𝑦̂ 𝑦̇𝑚 − 𝑦̇̂] and 𝑿𝒆𝟑 = [𝑧𝑚 − 𝑧̂ 𝑧̇𝑚 − 𝑧̇̂] for the 𝑥-axis, the 𝑦-axis and the 𝑧-

axis, respectively. The FNN weighting vector for the 𝑖th axis is 𝜽̂𝒊
𝑻(𝑡) = [𝜃̂𝑖1

 ⋯ 𝜃̂𝑖𝑛
 ]. 𝜑(𝑿𝒆𝒊) ∈ ℝ𝑛 is the fuzzy basis 

function vector for the 𝑖th axis, for which the components 𝜑𝑗(𝑿𝒆𝒊) are obtained as follows 

 

𝜑𝑗(𝑿𝒆𝒊) =
∏ 𝜇

𝐴
𝑙
𝑗(𝑋𝑒𝑖,𝑙)𝑘

𝑙=1

∑ (∏ 𝜇
𝐴

𝑙
𝑗(𝑋𝑒𝑖,𝑙)𝑘

𝑙=1 )𝑛
𝑗=1

                             (15) 

 

 for 1 ≤ 𝑗 ≤ 𝑛, where 𝐴𝑙
𝑗
 are fuzzy sets corresponding to the membership functions 𝜇

𝐴𝑙
𝑗, for 1 ≤ 𝑙 ≤ 𝑘 and 1 ≤ 𝑙 ≤ 𝑛, 

computed for each input 𝑋𝑒𝑖,𝑙 using the following Gaussian function:  

 

𝜇
𝐴𝑙

𝑗(𝑋𝑒𝑖,𝑙) = exp [−
(𝑋𝑒𝑖,𝑙−𝑎𝑖,𝑙

𝑗
)

2

2𝜇2 ]                          (16) 
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where 𝑎𝑖,𝑙
𝑗

 is the width of the Gaussian function and 𝜇 >  0 is the center of the receptive field. These parameters, known 

as membership function parameter set, and the number of fuzzy rules (𝑛) are very relevant for the accuracy of the FNN 

output. The approximate vector function at the FNN’s output can therefore be written as follows: 

 

𝒇̂(𝑿𝒆|𝜽̂ ) = 𝜽̂𝑻𝝋(𝑿𝒆)                (17) 

 

where 𝝋𝑇(𝑿𝒆) = [𝜑𝑇(𝑿𝒆,𝟏) 𝜑𝑇(𝑿𝒆,𝟐) 𝜑𝑇(𝑿𝒆,𝟑)] ∈ ℝ𝟑𝒏 is the vector of radial basis functions and 𝜃̂ =

block − diag[𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟑] ∈ ℝ𝟑𝒏×𝟑 is the matrix of weighting vectors for the three axis for which the update rule is 

designed as follows: 

 

𝜽̇̂ = 𝜸−𝟏𝝋(𝑿𝒆)𝒔̂𝑻                 (18) 

 

𝜸 = dag[𝛾1 𝛾2 𝛾3] with 𝛾𝑖 > 0 ∈ ℝ being the learning rate for the 𝑖th axis. The variable 𝒔̂ ∈ ℝ𝟑 is the filtered 

error function calculated using the estimated state variables as follows: 

 

𝒔̂ = 𝒆̇̂ + 𝚪𝒆̂                     (19) 

 

where 𝑒̂𝑇 = [𝑒̂1 𝑒̂2 𝑒̂3] is the approximate tracking error vector, with 𝑒̂1 = 𝑥𝑚 − 𝑥̂, 𝑒̂2 = 𝑦𝑚 − 𝑦̂ and 𝑒̂1 = 𝑧𝑚 − 𝑧̂, 

and Γ = Γ𝑇 > 0 ∈ ℝ3×3 is chosen so that lim
𝑡→∞

𝒆̂ = 0.  

 

The difference between the FNN’s output and the actual function being approximated is given by: 

 

𝒇̂(𝑿𝒆|𝜽̂ ) − 𝒇(𝒒, 𝒒̇) = 𝜽̃𝑻𝝋(𝑿𝒆) − 𝜺(𝑿𝒆)                   (20) 

 

where 𝜽̃  represents the error on the approximated weight matrix, and the vector 𝜺(𝑿𝒆) =

[𝜀1(𝑿𝒆,𝟏) 𝜀2(𝑿𝒆,𝟐) 𝜀3(𝑿𝒆,𝟑)]
𝑻
 represents the FNN’s approximation error. 

 

Assumption: There exist an unknown constant 𝜀𝑒𝑖,𝑚𝑎𝑥 > 0 such that the error 𝜀𝑖(𝑿𝒆,𝒊), for 1 ≤ 𝑖 ≤ 3, is bounded over 

the compact set ∆∈ ℝ6, i.e. max
𝑋𝑒,𝑖∈ℝ6

|𝜀𝑖(𝑿𝒆,𝒊)| ≤ 𝜀𝑖,𝑚𝑎𝑥.  

To generate the actuation force for the 3-axis MEMS gyroscope, the control law is designed as follows: 

 

𝒖(𝑡) = 𝒇̂(𝑿𝒆|𝜽̂ ) + 𝒒̈𝒎 + 𝚪𝒆̇̂ + 𝜼̂(𝒕)𝑻(𝒔̂) + 𝑲𝑬(𝒔̂)                   (21) 

 

It uses states 𝑿̂ estimated by the high-gain state observer given by Eq. (7) and the vector function 𝒇̂(𝑿𝒆|𝜽̂ ) provided by 

the FNN’s output. The constant matrix 𝑲 = 𝒅𝒊𝒂𝒈[𝐾1 𝐾2 𝐾3] is a positive definite design parameter to be selected. 

The control law uses two nonlinear functions, 𝑻(𝒔̂) = [𝑇1(𝑠̂1) 𝑇2(𝑠̂2) 𝑇3(𝑠̂3)]𝑇 and 𝑬(𝒔̂) =
[𝑇1(𝑠̂1) 𝑇2(𝑠̂2) 𝑇3(𝑠̂3)]𝑇, where 𝑇𝑖(𝑠̂𝑖) = (exp(4𝑠̂𝑖) − 1) (exp(4𝑠̂𝑖) + 1)⁄  and 𝐸𝑖(𝑠̂𝑖) = 𝑠̂𝑖 (exp(𝑠̂𝑖) + 1)⁄ , 

respectively, for 1 ≤ 𝑖 ≤ 3 [13]. The dynamic parameter 𝜼̂(𝒕) ∈ ℝ𝟑×𝟑 is expressed as follows: 

 

𝜼̂(𝒕) = 𝜶(𝒕) + 𝜷(𝒕)                     (22) 

 

where 𝜷(𝒕) = diag[𝜌|𝜀1̂| 𝜌|𝜀2̂| 𝜌|𝜀3̂|], 𝜌 > 0, with the parameter 𝜀𝑖̂ ∈ ℝ being an estimation of the 𝑖th FNN’s output 

approximation error 𝜀𝑖 upper bound and 𝜶(𝑡) = diag[𝛼̂1 𝛼̂2 𝛼̂3] is an estimation of the external disturbance’s upper 

bound. The update rule for vector 𝜺̂ = [𝜀1̂ 𝜀2̂ 𝜀3̂]𝑇 is given as follows: 

 

𝜺̂ = 𝜻𝜺
−𝟏𝒔̂                        (23) 

 

where 𝜻𝜺
 = diag[𝜁𝜀,1

 𝜁𝜀,2
 𝜁𝜀,3

 ] is a matrix of learning rate with 𝜻𝜺,𝒊
 ∈ ℝ+ for 1 ≤ 𝑖 ≤ 3. 
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The dynamic parameter 𝛼(𝑡) ∈ ℝ3×3 is computed using an adaptive law given as follows: 

 

𝜶̇̂(𝑡) = 𝜻𝜶
−𝟏𝒔̂∗                       (24) 

 

where 𝒔̂∗ = diag[𝑠̂1 𝑠̂2 𝑠̂3] and the learning rate matrix is 𝜻𝜶
 = diag[𝜁𝛼,1

 𝜁𝛼,2
 𝜁𝛼,3

 ] with 𝜻𝜶,𝒊
 ∈ ℝ+ for 1 ≤ 𝑖 ≤ 3. 

 

In order to check the closed to system stability when the nonlinear control law given by Eq. (21) is applied to the 3-axis 

MEMS gyroscope, let us use the following candidate Lyapunov’s function: 

 

𝑉 =
1

2
𝒔𝑻𝒔 +

1

2
tr[𝜃̃𝑇𝛾𝜃̃] +

1

2
tr[𝛼̃𝑇𝜁𝛼

 𝛼̃] +
1

2
𝜺̃𝑻𝜻𝜺

 𝜺̃                              (25) 

 

where  

 

{
𝜽̃ = 𝜽̂ − 𝜽∗

𝜶̃ = 𝜶̂ − 𝜶 

𝜺̃ = 𝜺̂ − 𝜺 

                     (26) 

 

The matrix 𝜽̃ ∈ ℝ𝟑𝒏×𝟑 represents the error on the approximated weight matrix 𝜽̂,  with 𝜽∗ ∈ ℝ𝟑𝒎×𝟑; 𝜶̃ is the error on the 

approximate matrix 𝜶̂; 𝜺̃ is the approximation error for 𝜺̂. 

The first order derivative of the Lyapunov’s function is obtained as follows: 

 

𝑉̇ = 𝒔𝑻𝒔̇ + tr [𝜃̃𝑇𝛾𝜃̇̃] + tr[𝛼̃𝑇𝜁𝛼
 𝛼̇̃] + 𝜺̃𝑻𝜻𝜺

 𝜺̇̃                               (27) 

 

With the exact state variables, the filtered error vector function is expressed as follows: 

 

𝒔 = 𝒆̇ + 𝚪𝐞                         (28) 

 

Deriving 𝒔 with respect to time, and using 𝒆̈ = 𝒒̈𝒎 − 𝒒̈ and Eqs. (13), (20) and (21) yields: 

 

𝒔̇ = −[𝜽̃𝑻𝝋(𝑿𝒆) − 𝜺(𝑿𝒆) ] + 𝚪(𝒆̇ − 𝒆̇̂) − 𝜼̂(𝒕)𝑻(𝒔̂) − 𝑲𝑬(𝒔̂) + 𝒅(𝒕)                  (29) 

 
Applying Eqs. (26) and (29) in Eq. (27) yields: 

 

𝑉̇ = 𝒔𝑻{−[𝜽̃𝑻𝝋(𝑿𝒆) − 𝜺(𝑿𝒆) ] + 𝚪(𝒆̇ − 𝒆̇̂) − 𝜼̂(𝒕)𝑻(𝒔̂) − 𝑲𝑬(𝒔̂) − 𝒅(𝒕)} + tr [𝜽̃𝑻𝜸𝜽̇̃] + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝜺̃𝑻𝜻𝜺

 𝜺̇̂ 

= 𝐭𝐫 [𝜽̃𝑻 (𝜸𝜽̇̂ − 𝝋(𝑿𝒆)𝒔𝑻)] + 𝒔𝑻 𝜺(𝑿𝒆) + 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝜺̃𝑻𝜻𝜺

 𝜺̇̂          

                      (30) 

Let us now use the update rules given by Eqs. (18), (23) and (24) and the identities given by Eq. (26), while considering 

the convergence property of the high-gain state observer (i.e. 𝒔̂ → 𝒔) to obtain: 

 

𝑉̇ = 𝐭𝐫[𝜽̃𝑻𝝋(𝑿𝒆)(𝒔̂𝑻 − 𝒔𝑻)] + 𝒔𝑻 (𝜺̂ − 𝜺̃) + 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝜺̃𝑻𝜻𝜺

 𝜺̇̂  

    ≅ 𝒔𝑻(𝜺̂ − 𝜺̃) + 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝜺̃𝑻𝜻𝜺

 𝜺̇̂          

     = 𝒔𝑻(𝜻𝜺
 𝜺̇̂ − 𝒔) + 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶

 𝜶̇̂] + 𝒔𝑻𝜺̂                                                (31) 

     = 𝜺̃𝑻(𝒔̂ − 𝒔) + 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr [𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝒔𝑻𝜺̂  

     ≅ 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑻(𝒔̂) − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝒔𝑻𝜺̂  

 
During the worst situation caused by external disturbances or varying system parameters, the filtered error function 𝒔̃ 

diverges from the origin such that 𝑇𝑖(𝑠̂𝑖) = (exp(4𝑠̂𝑖) − 1) (exp(4𝑠̂𝑖) + 1)⁄ ≅ 1. Hence, Eq. (31) where the identity 

given by Eq. (22) is used, becomes: 
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 𝑉̇ ≅ 𝒔𝑻𝒅(𝒕) − 𝒔𝑻𝜼̂(𝒕)𝑰𝟑 − 𝒔𝑻𝑲𝑬(𝒔̂) + tr[𝜶̃𝑻𝜻𝜶
 𝜶̇̂] + 𝒔𝑻𝜺̂ 

     = 𝒔𝑻𝒅(𝒕) − 𝒔𝑻[𝜶(𝒕) + 𝜷(𝒕) ]𝑰𝟑 − ∑ 𝑲𝒊
𝒔̂𝒊𝒔𝒊

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + tr[𝜶̃𝑻𝜻𝜶

 𝜶̇̂] + 𝒔𝑻𝜺̂ − 𝒔𝑻𝜶𝑰𝟑 + 𝒔𝑻𝜶𝑰𝟑                               (32) 

 

where 𝑰𝟑 ∈ ℝ𝟑×𝟑 is an identity matrix. Considering the convergence property of the observer and using the expression 

of 𝜶̃  given by Eq. (26) and the update rule given by Eq. (24) yields: 

 

𝑉̇ = 𝒔𝑻𝒅(𝒕) − 𝒔𝑻[−𝜶̂ + 𝜶(𝒕) ]𝑰𝟑 − ∑ 𝑲𝒊
𝒔𝒊

𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + tr[𝜶̃𝑻𝜻𝜶

 𝜶̇̂] + 𝒔𝑻𝜺̂ − 𝒔𝑻𝜶𝟏𝑰𝟑 − 𝒔𝑻𝜷𝑰𝟑  

            = 𝒔𝑻𝒅(𝒕) + 𝐭𝐫[𝜶̂𝑻(𝜻𝜶
 𝜶̇̂ − 𝑰𝟑𝒔𝑻)] − ∑ 𝑲𝒊

𝒔𝒊
𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + 𝒔𝑻𝜺̂ − 𝒔𝑻𝜶𝟏𝑰𝟑 − 𝒔𝑻𝜷𝑰𝟑  

            = 𝒔𝑻𝒅(𝒕) + 𝐭𝐫[𝜶̂𝑻(𝒔̂∗ − 𝒔∗)] − ∑ 𝑲𝒊
𝒔𝒊

𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + 𝒔𝑻𝜺̂ − 𝒔𝑻𝜶𝟏𝑰𝟑 − 𝒔𝑻𝜷𝑰𝟑                                                    (33) 

            ≅ 𝒔𝑻𝒅(𝒕) − ∑ 𝑲𝒊
𝒔𝒊

𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + 𝒔𝑻𝜺̂ − 𝒔𝑻𝜶𝟏𝑰𝟑 − 𝒔𝑻𝜷𝑰𝟑  

            ≤ 𝒔𝑻𝒅(𝒕) − ∑ 𝑲𝒊
𝒔𝒊

𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + ‖𝒔‖(‖𝒅‖ − ‖𝜶‖) + ‖𝒔‖(‖𝜺̂‖ − ‖𝜷‖)  

Knowing that 𝜷 = diag[𝜌|𝜀1̂| 𝜌|𝜀2̂| 𝜌|𝜀3̂|], 𝜌 > 0 such that ‖𝜷‖ = 𝝆‖𝜺̂‖ Eq. (33) becomes: 

 

𝑉̇ ≤ 𝒔𝑻𝒅(𝒕) − ∑ 𝐾𝑖
𝒔𝒊

𝟐

exp(𝑠̂𝑖)+1

𝟑
𝒊=𝟏 + ‖𝒔‖(‖𝒅‖ − ‖𝜶‖) + ‖𝒔‖ (

1

𝜌
− 𝟏) ‖𝜷‖                                                                  (34) 

 

Considering that ‖𝜶‖ ≫ ‖𝒅‖ (it is worth noting that 𝜶 is used only for analytic purpose but it is not needed for the 

controller’s implementation), and selecting 𝜌 > 1, with 𝐾𝑖 ∈ ℝ+, we have 𝑉̇ ≤ 0. Thus, with the proposed control law, 

with its dynamic parameters and state observer, the control objective is achieved as the closed-loop system is 

asymptotically stable despite uncertain system parameters, FNN approximation errors and external disturbances. 

 

IV. SIMULATION AND DISCUSSION 

Let us illustrate the efficiency of the designed control scheme for the 3-axis MEMS gyroscope by presenting simulation 

results obtained using MATLAB/SIMULINK. The control objective consists in forcing the position vector 𝒒 to track the 

reference trajectory 𝒒𝒎 = [𝑥𝑚 𝑦𝑚 𝑧𝑚]𝑇  where 𝑥𝑚 = sin(6.71𝑡), 𝑦𝑚 = 1.2 sin(5.11𝑡) and 𝑧𝑚 = 1.5 sin(4.17𝑡). The 

parameters of the simulated 3-axis MEMS gyroscope are as follows [4]: 𝑚 = 0.57 × 10−8𝑘𝑔, 𝑞0 = 1𝜇𝑚, 𝜔0 = 3𝑘𝐻𝑧, 

𝑑𝑥𝑥 = 0.429 × 10−6𝑁𝑠/𝑚, 𝑑𝑦𝑦 = 0.687 × 10−6𝑁𝑠/𝑚, 𝑑𝑧𝑧 = 0.895 × 10−6𝑁𝑠/𝑚, 𝑑𝑥𝑦 = 0.0429 × 10−6𝑁𝑠/𝑚, 

𝑑𝑥𝑧 = 0.0687 × 10−6𝑁𝑠/𝑚, 𝑑𝑦𝑧 = 0.0895 × 10−6𝑁𝑠/𝑚, 𝑘𝑥𝑥 = 80.98 𝑁/𝑚, 𝑘𝑦𝑦 = 71.62 𝑁/𝑚, 𝑘𝑧𝑧 = 60.97 𝑁/𝑚, 

𝑘𝑥𝑦 = 5 𝑁/𝑚, 𝑘𝑥𝑧 = 6 𝑁/𝑚, 𝑘𝑦𝑧 = 7 𝑁/𝑚. We assume that the unknown angular velocities are Ω𝑥 = 3 𝑟𝑎𝑑/𝑠, Ω𝑦 =

2𝑟𝑎𝑑/𝑠 and Ω𝑧 = 5
𝑟𝑎𝑑

𝑠
.  

The parameter settings for the high-gain observer are selected, for 1 ≤ 𝑖 ≤ 3, as 𝐿𝑖 = [
18

𝜎(𝑡)

9

𝜎(𝑡)
]

𝑇

where 𝜎(𝑡) is given 

by Eq. (8). For the FNN used to approximate the unknown dynamics (as the MEMS gyroscope parameters are not used 

for the controller’s implementation) we use five fuzzy rules for each axis. The following membership function is 

implemented for each axis: 

𝜇
𝐴𝑙

𝑗 = exp [−
(𝑋𝑒𝑖,𝑙+1.5−(𝑗−1)0.5)

2

102 ]                                   (35) 

where 𝑋𝑒𝑖,𝑙 = [𝑞̂𝑖 𝑞̇̂𝑖]
𝑇, 𝑖 = 1, 2, 3, 1 ≤ 𝑗 ≤ 5 and 𝑙 = 1, 2. The learning rates for each axis’s weighting vector is 

selected as 𝛾𝑖 = 15 for 𝑖 = 1, 2, 3. The learning rate for the dynamic parameters 𝜺̂(𝑡) and 𝜶(𝑡) are selected as 𝜁𝜀,𝑖
 = 0.5 

and 𝜁𝛼,𝑖
 = 1800 for 𝑖 = 1, 2, 3, respectively. For the filtered error function, the entries of the diagonal matrix Γ ∈ ℝ3 are 

selected as 50 on the diagonal. For the dynamic parameter 𝜷(𝑡) we select 𝜌 = 450. The controller’s parameter 𝑲 = 𝑲𝑇 ∈
ℝ3×3 elements are selected as 𝐾𝑖 = 25, for 1 ≤ 𝑖 ≤ 3. The external disturbance is 𝑑(𝑡) =
[10 sin(6𝑡) 10 cos(5𝑡) 10 cos(4𝑡)]𝑇. 
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For this simulation, the initial system’s state vector is selected as 𝑿𝟎 = [0.5 0 0.5 0 1 0].  Figure 1 shows the three axis 

positions 𝑥, 𝑦 and 𝑧 tracking their given references 𝑥𝑚, 𝑦𝑚 and  𝑧𝑚.  

 
Fig. 1 Position tracking on the 𝑥, 𝑦 and 𝑧 axis  

One can observe in Fig. 1 that, starting from different initial conditions, the MEMS gyroscope states converge and remain 

very close to the desired states 𝑥𝑚, 𝑦𝑚 and  𝑧𝑚. This is achieved after a very short transient phase (nearly at 𝑡 = 0.1𝑠). 

Let us remind that this very good tracking accuracy is obtained using a state observer, which provides an accurate 

estimation of the unmeasured states 𝑥̇, 𝑦̇ and 𝑧̇. Figure 2 depicts states 𝑥̇, 𝑦̇ and 𝑧̇ with their estimated values 𝑥̇̂, 𝑦̇̂ and 𝑧̇̂  

obtained using the high-gain state observer given by Eq. (7). 

 

Fig. 2 State estimation by the high-gain state observer  
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The good tracking accuracy depicted in Fig.1 is also obtained thanks to the control action generated using the proposed 

control law. Figure 3 shows control forces on the three axis. 

 

Fig .3 Throughput of sending bits Vs Maximal simulation jitter 

V.CONCLUSION 

This paper has presented a nonlinear control scheme for a 3-axis MEMS gyroscope subject to external disturbances and 

uncertain dynamics or parameters. The control schemes exploits the universal approximation theorem related to FNN to 

approximate the unknown dynamics to be used for the controller’s implementation without requiring the knowledge of 

the MEMS parameters. As for this study full state measurement was considered unavailable, a model-free high-gain state 

observed has been used, which is able to provide an accurate estimation of the state vector. Simulation results have shown 

that a very good tracking accuracy is obtained on the three axis despite external disturbance and FNN approximation 

errors. 
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