

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijareeie.com

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1501

Trigonometric Computation Using CORDIC
Algorithm

Suresh H1 , Roshni Oommen2

Graduate Associate, Dept. of ECE, Saintgits College of Engineering, Kottayam, Kearala, India1

Asst. Professor, Dept. of ECE, Saintgits College of Engineering, Kottayam, Kearala, India 2

ABSTRACT: The CORDIC (Coordinate Rotation Digital Computer) algorithm is an iterative algorithm used for the
computation of trigonometric functions, multiplication, division, data type conversion, square root and
transcendental functions as those have wide range of applications. The simple way of calculating sine and cosine of an
input angle using CORDIC algorithm in Verilog with fixed number of iterations is proposed. The algorithm uses
predefined LUT (look-up table) for angle calculations.

KEYWORDS: CORDIC, sine, cosine, Verilog

I. INTRODUCTION

CORDIC is the full form of Co-ordinate Rotation Digital Computer. It is derived from the general
equations of vector rotation. The CORDIC algorithm provides an iterative method of performing vector
rotation by arbitrary angle using shift and adds. The CORDIC algorithm has become a widely used approach to
elementary function evaluation when the silicon area is a primary constraint. The implementation of CORDIC
algorithm requires less complex hardware than the conventional method. The CORDIC algorithm has found its way
in various applications such as pocket calculators, numerical co-processors, to high performance radar signal
processing, supersonic bomber aircraft with a digital counterpart, computation of the (Fast Fourier
Transform) FFT, and at the effects on the numerical accuracy. CORDIC algorithm revolves around the idea of
"rotating" the phase of a complex number, by multiplying it by a succession of constant.

II. CORDIC ALGORITHM

CORDIC algorithm is taken from the general equations for a vector rotation. If a vector V with co-

ordinates (x, y) is resolved through an angle Ø then a new vector V’ with modified coordinates (x’, y’) is obtained
where x’ and y’ can be found using x, y and Ø from the subsequent method. For easy calculation only rotation in
anticlockwise direction is considered. So the equations for x’ and y’ can be given as

X’= xcosØ – ysinØ

Y’= xsinØ + ycosØ

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1502

Figure 1. Rotation of Vector V(x,y)

By absorbing {cos Ø} from both sides, modified equation will be in form of the tangent of the angle Ø. Next if it is
presumed that the angle Ø is being a cumulative of small angles, and composite angles is chosen such that their
tangents are 2-i, then this equation can be rephrased as an iterative information

X’= cosØ (x- ytanØ)

Y’= cosØ (xtanØ + y)
Where Ø is the angle of rotation.

The multiplication of tangent term can be escaped if the rotation angles and tan (Ø) are limited so that tan (Ø)=2-I . In
digital hardware, this signifies a simple shift process. If those rotations are phenomenon regularly.

With Ø = tan-1(2-i)

With the cosine term could also be simplified and since

cos (Ø) = cos (-Ø)

xi+1=cos(αi).[xi-yi.di.tan(αi)]

yi+1=cos(αi).[yi-yi.di.tan(αi)]

xi+1=ki[xi-yi.di.2-i]

yi+1=ki[yi-xi.di.2-i]

ki=cos(αi)=cos(tan-1(2-i))

di=±1

Where ‘i’ denotes the number of rotations required reaching required angle of the required vector ki=cos 푡푎n-1

(2)-i.

The product of the ki represent the k factor. ki is the gain and its value changes as the number of rotation increases.Thus
the multiplication is aggregated as

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1503

k=∏ 푘i ; n→α , k=0.607252935

Table 1. Look Up Table

III. PROPOSED METHODOLOGY

A.Algorithm

The rotation-mode algorithm described above can rotate any vector (not only a unit vector aligned along
the x axis) by an angle between –90° and +90°. Decisions on the direction of the rotation depend on being positive or
negative. The vectoring-mode of operation requires a slight modification of the algorithm. It starts with a vector
the x coordinate of which is positive and the y coordinate is arbitrary. Successive rotations have the goal of rotating the
vector to the x axis (and therefore reducing the y coordinate to zero). At each step, the value of y determines the
direction of the rotation. The final value of contains the total angle of rotation. The final value of x will be the
magnitude of the original vector scaled by K. So, an obvious use of the vectoring mode is the transformation from
rectangular to polar coordinates. Considering that z is the initial input angle. At each step, z tries to converge to ‘0’. The
following are the steps for the algorithm
Step 1: Initialize x=0.60725, y=0, z= Ø
Step 2: For i=0 to n-1 then di = 1 when z>0 or else -1
Step 3:

 yi+1=ki[yi-xi.di.2-i]
 yi+1=ki[yi-xi.di.2-i]
 zi+1 = zi – di . αi

Step 4: check whether the N iterations are completed if completed
Step 5: Result: xn=cos(Ø), yn=sin(Ø)

i 2i ϴ= 푡푎n-(2)-i

in degrees
Decimal

value
0 20 45 1048576
1 2-1 26.56 619009
2 2-2 14.03 327067
3 2-3 7.125 166021
4 2-4 3.57 82332
5 2-5 1.78 41207
6 2-6 0.89 20857
7 2-7 0.44 10429
8 2-8 0.22 5214
9 2-9 0.11 2607
10 2-10 0.05 1302

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1504

B. Flow Chart

Figure 2. Flow chart of CORDIC algorithm

IV. SOFTWARE DESCRIPTION

 Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL
designs, superseding Xilinx ISE with additional features for system on a chip development and high-level
synthesis. Vivado enables developers to synthesize (compile) their designs, perform timing analysis,
examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target device with the
programmer. Vivado is a design environment for FPGA products from Xilinx, and is tightly-coupled to the
architecture of such chips, and cannot be used with FPGA products from other vendors.

Components of Vivado include:
 The Vivado High-Level Synthesis compiler enables C, C++ and System programs to be directly targeted into

Xilinx devices without the need to manually create RTL.
 The Vivado Simulator is a component of the Vivado Design Suite. It is a compiled- language simulator

that supports mixed-language, TCL scripts, encrypted IP and enhanced verification.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1505

 The Vivado IP Integrator allows engineers to quickly integrate and configure IP from the large Xilinx IP
library. The Integrator is also tuned for Math Works Simulink designs built with Xilinx’s System Generator
and Vivado High-Level Synthesis.

 The Vivado TCL Store is a scripting system for developing add-ons to Vivado, and can be used to add to and
modify Vivado’s capabilities.

V. RESULT AND SIMULATION

Figure 3.RTL Schematic of CORDIC Algorithm

Simulation:

Figure 4.simulation result for Input = 5°

Figure 5.simulation result for Input = 45°

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 7, Issue 3, March 2018

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2018.0703019 1506

VI. CONCLUSION

Efficient method to calculate sine and cosine is implemented using Verilog coding. Applications in several
diverse areas including signal processing, image processing, communication, robotics and graphics apart from
general scientific and technical computations have been explored.

REFERENCES

[1] Ranjita Naik,” Sine-Cosine Computation Using CORDIC Algorithm”, International Journal of Advanced Research in Computer and
Communication Engineering, Vol. 4, Issue 9, September 2015
[2] M.Chakrapani,” Implementation of Cordic Algorithm for FPGA Based Computers Using Verilog”, International Journal of
Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, Issue 8, August2014
[3] Volder, J.E. (1959),” The CORDIC Trigonometric Computation Technique” , IRE Transactions on Electronic Computers 8 (3): 330–334,
retrieved 2009-06-02
[4] Walther, J.S. (1971), “ A unified Algorithm for Elementary Function” (w), Proceedings of the May 18–20, 1971, spring joint computer
conference: 379–385, retrieved 2009-06-02
[5] Chih-Hsiu Lin, An-Yeu Wu, "Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and architecture for highperformance vector
rotational DSP applications", Circuits and Systems I: Regular Papers IEEE Transactions on, vol. 52, no. 11, pp. 2385-2396, Nov. 2005.
[6]Cheng-Shing Wu, An-Yeu Wu, "Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture", Circuits and Systems II:
Analog and Digital Signal Processing IEEE Transactions on, vol. 48, no. 6, pp. 548-561, Jun 2001.
[7]Xu Li, Wang Qin, "CORDIC based algorithm for frequency offset estimation", Communication Technology (ICCT) 2010 12th IEEE International
Conference on, pp. 817-820, 11-14 Nov. 2010.
[8]M. Chinnathambi, N. Bharanidharan, S. Rajaram, "FPGA implementation of fast and area efficient CORDIC algorithm", Communication and
Network Technologies (ICCNT) 2014 International Conference on, pp. 228-232, 18-19 Dec. 2014.
[9]Mane, D. Patil, M.S. Sutaone, A. Sadalage, "Implementation of DCT using variable iterations CORDIC algorithm on FPGA", Computational
Systems and Communications (ICCSC) 2014 First International Conference on, pp. 379-383, 17-18 Dec. 2014.
[10]Sharma, P.N. Ravichandran, S. Kulkami, M. Vanitha, P. Lakshminarsimahan, "Implementation of Para-CORDIC Algorithm and Its Applications
in Satellite Communication", Advances in Recent Technologies in Communication and Computing 2009. ARTCom ‘09. International Conference on,
pp. 266-270, 27-28 Oct. 2009.
[11]. Pongyupinpanich, F.A. Samman, M. Glesner, S. Singhaniyom, "Design and evaluation of a floating-point division operator based on CORDIC
algorithm", Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON) 2012 9th International
Conference on, pp. 1-4, 16-18 May 2012.
[12]Ma Jun, K.K. Parhi, E.F. Deprettere, "Annihilation-reordering look-ahead pipelined CORDIC-based RLS adaptive filters and their application to
adaptive beamforming", Signal Processing IEEE Transactions on, vol. 48, no. 8, pp. 2414-2431, Aug 2000.
[13]An-Yeu Wu, Cheng-Stung Wu, "A unified VIew for vector rotational CORDIC algorithms and architectures based on angle quantization
approach", Circuits and Systems I: Fundamental Theory and Applications IEEE Transactions on, vol. 49, no. 10, pp. 1442-1456, Oct 2002.

