

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An UGC Approved Journal)

Website: www.ijareeie.com

Vol. 6, Issue 9, September 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0609049 6977

 Verification Environment of GPIO Core
using UVM and Makefile in Perl Scripting

Salma Jabeen1, Asarafuddin M D2

Assistant Professor, Dept. of ECE, GNIT, Hyderabad, Telangana, India1

Team Lead in private forum, Hyderabad, Telangana, India2

ABSTRACT:The GPIO core design provides a general purpose input/output interface to a 32-bit On-Chip Peripheral
Bus (OPB). GPIO is a generic pin on an integrated circuit (IC) whose behavior, including whether it is an i/o pin, that
can be controlled by the user at run time. Almost all FPGA boards contain GPIO peripheral. In this paper we have tried
to implement GPIO design by writing the code in VERILOG and simulating it in QUESTA MODELSIM and writing
makefile in perl scripting and verifying all functions of GPIO core by UVM. The functional and code coverage and
functional verification of the GPIO RTL design is carried out for the better optimum design.

KEYWORDS: GPIO, OPB,Perl Scripting, QUESTA MODELSIM, XILINX ISE, Verilog, UVM, Coverage, FPGA

I. INTRODUCTION

The General purpose input/output IP core is user-selectable or user-programmable general-purpose Input/output
controller. It is mainly used for implementation of functions that are not implemented with help of dedicated controllers
in a system and require simple output and input software controlled or programmable signals. The General Purpose IO
module is part of Inicore's IP module family. This general purpose input/output controller gives some unique features
that ease system integration and use. Each General Purpose IO port can be configured for output input or bypass mode.
In one set all output data can be access. Single or multiples bits can be cleared or set independently. Every General
Purpose IO port can serve as an interrupt source and has its own configuration options: • Level sensitive, single edge
triggered or level change • Active low or high respectively positive edge or negative edge. • Individual interrupt enable
register and status flags. The GPIO core provides several synthesis options to ease the system integration and minimize
the gate count: •CPU bus width is selectable: default options are 8/16/32-bit • Selectable number of General Purpose
I/O ports • CPU read back enable

II. GPIO (GENERAL PURPOSE I/O)

General architecture of GP I/O IP core is consists of four main building blocks:
• APB host interface
 • GP I/O registers
• Auxiliary inputs
• Interface to external I/O cells and pads

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An UGC Approved Journal)

Website: www.ijareeie.com

Vol. 6, Issue 9, September 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0609049 6978

A. Architecture of GPIO

Fig.1 Architecture of GPIO

i. Clocks: The GP I/O core has two clock domains. All registers are in system clock domain except RGPIO_IN. The
register RGPIO_IN can be clocked by external clock or by system clock.
ii. APB Interface: APB interface connects GPIO core to the host system.The implementation implements a 32-bit bus
width and does not support other bus widths.
iii. GPIO Registers: The GP I/O IP Core has several software accessible or programmable registers. Most registers
have the same width as number of general-purpose I/O signals and they can be from 1 – 32 bits. The host through these
registers programs type and operation of each general-purpose I/O signal
iv. Auxiliary Inputs: The auxiliary inputs can bypass RGPIO_OUT outputs based on programming of RPGIO_AUX
register. Auxiliary inputs are used to multiplex other on-chip peripherals on GPIO pins.
v.Interface to External I/O Cells and Pads: External interface connects GPIO core to external I/O ring cells and pads.
To support open-drain or three-state outputs, appropriate opendrain or three-state I/O cells must be used. Part of
external interface is also ECLK signal. It can be used to register inputs based on external clock reference.

III. UNIVERSAL VERIFICATION METHODOLOGY

The UVM (Universal Verification Methodology) was introduced in December 2009, by a technical Sub committee of
Accellera. The Universal Verification Methodology (UVM) is a standardized methodology for verifying integrated
circuit designs. UVM is derived mainly from the OVM (Open Verification Methodology) which was, to a large part,
based on the eRM (e Reuse Methodology) for the e Verification Language developed by Verisity Design in 2001. The
UVM class library brings much automation to the SystemVerilog language such as sequences and data automation
features (packing, copy, compare) etc., and unlike the previous methodologies developed independently by the
simulator vendors, is an Accellera standard with support from multiple vendors: Aldec, Cadence, Mentor Graphics, and
Synopsys.
Today, more and more logic is being integrated on the single chip so verification of it is a very challenging task. More
than 70 percent of the time is spent on the verification of the chip. So it is a need of an hour to have a common
verification methodology that provides the base classes and framework to construct robust and reusable verification
environment. UVM provides that.
 In this paper, all the terminology related to UVM is introduced along with the sample example. In first phase uvm
components are introduced. In second phase some of the features related to UVM are introduced and in final phase
small environment is built using UVM from the scratch.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An UGC Approved Journal)

Website: www.ijareeie.com

Vol. 6, Issue 9, September 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0609049 6979

IV. UVM TESTBENCH ARCHITECTURE

The following subsections describe the components of a verification .
• Data Item (Transaction)
 • Driver (BFM)
 • Sequencer
 • Monitor
 • Agent
 • Environment
 • Data Item (Transaction): Data item are basically the input to the device under test. All the transfer done between
different verification components in UVM is done through transaction object. Networking packets, instructions for
processor are some examples of transactions.
• Driver (BFM): Driver as the name suggest, drive the DUT signals. It basically receives the transaction object from
the sequencer and converts it in to the pin level activity. So for example it can generate read or write signal, write
address and data to be transferred. It is the active part of the verification logic.
• Sequencer: Sequencer is the component on which the sequences will run. The DUT needs to be applied a sequence of
transaction to test its behaviour. So sequence of transaction is generated and it is applied to driver whenever it demands
by the sequencer.
• Monitor: A monitor is the passive element of the verification environment. It just sample the dut signal from the
interface but does not drive them. It collect the pin information, package it in form of a packet and then transfer it to
scoreboard or other components for coverage information.
• Agent: Agent is basically a container. It contains driver, monitor and sequencer. Driver and sequencer are connected
in agent. Agent has two modes of operation: passive and active. In active mode it drives the signal to the DUT. So
driver and sequencer are instantiated in active mode. In passive mode it just sample the DUT signals does not drive
them. So only monitor is instantiated in passive mode.
• Scoreboard: Scoreboard is a verification component that checks the response from the DUT against the expected
response. So it keeps track of how many times the response matched with the expected response and how many time it
failed.
• Environment: Environment is at the top of the test bench architecture, it will contain one or more agents depend on
design. If more than one agents are there then it will be connected in this component. Agents are also connected to
other components like scoreboard in this component.

V. PERL SCRIPTING

Perl (Practical Extraction and Reporting Language) is a family of high-level, general-purpose, interpreted, dynamic
programming languages. The languages in this family include Perl 5 and Perl 6.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An UGC Approved Journal)

Website: www.ijareeie.com

Vol. 6, Issue 9, September 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0609049 6980

Perl was originally developed by Larry Wall in 1987 as a general-purpose Unix scripting language to make report
processing easier.The Perl languages borrow features from other programming languages including C, shell script (sh),
AWK, and sed.They provide powerful text processing facilities without the arbitrary data-length limits of many
contemporary Unix command line tools, facilitating easy manipulation of text files.In addition to CGI, Perl 5 is used
for system administration, network programming, finance, bioinformatics, and other applications, such as for GUIs.
#!usr/bin/perl – called the "shebang line", after the hash symbol (#) and ! (bang) at the beginning of the line. It is also
known as the interpreter directive.
– the number sign, also called the hash symbol. In Perl, the # indicates the start of a comment. It instructs perl to
ignore the rest of the line and not execute it as script code.

VI. RESULTS AND DISCUSSION

Fig 3. simulation showing GPIO Functional Verification for write operation

The GP I/O is carried out for the functional verification using the UVM technique for both the read and write operation.
The functional verification is of the RTL design is of the GPIO is yields the complete code and functional coverage.
 The GPIO is set up as DUT for the functional verification and the code coverage is obtained for 100%.

 Fig 4. simulation showing GPIO Functional Verification for read operation.

http://www.ijareeie.com

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering

(An UGC Approved Journal)

Website: www.ijareeie.com

Vol. 6, Issue 9, September 2017

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.2017.0609049 6981

VII. COVERAGE REPORT

Fig 5 Functional code coverage of GPIO

VIII. CONCLUSION

In this we have designed and verified the GPIO core using Verilog and UVM technique using Questasim. The code
coverage is obtained for the RTL design and 100% code coverage and functional coverage is extracted. The per
scripting is written for makefile.This methodology provides the complete coverage of the RTL design so as to acquire
the fault free Protocol design of GPIO. So that can be implemented in real time systems. This can be further
implemented for the ASIC implementation and SOC Applications.

REFERENCES

 [1] D.Gajski et al, “Essential Issues for IP Reuse”, Proceedings of ASP-DAC, pp.37-42, Jan. 2000
[2] C.K.Lennard et al, “Industrially proving the SPIRIT Consortium Specifications for Design Chain Integration”, Proceedings of DATE 2006, pp. 1-
6, March 2006
[3] K.Cho et al, “Reusable Platform Design Methodology For SOC Integration And Verification”, Proceedings of ISOCC 2008, pp. I-78- I-81, Nov.
2008
[4] W.Kruijtzer et al, “Industrial IP integration flows based on IP-XACT standards” proceedings of DATE 2008, pp. 32-37, March 2008
[5] M.Strik et al, “subsystem Exchange in a Concurrent Design Process Environment” Proceedings of DATE 2008, pp. 953-958, March 2008
International Journal of Scientific and Research Publications, Volume 5, Issue 6, June 2015 4 ISSN 2250-3153 www.ijsrp.org
[6]GensysIO,http://www.atrenta.com/solutions/gensysfamily/gensys-io.htm
[7] SocratesSpinner
[8] opencores.org
[9] http://testbench.in
[10]http://www.verificationguide.com

http://www.ijareeie.com
http://www.ijsrp.org
http://www.atrenta.com/solutions/gensysfamily/gensys-io.htm
http://testbench.in
http://www.verificationguide.com

