
 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    83          

Design of Floating Point Adder/Subtractor 
and Floating Point Multiplier for FFT 

Architecture Using VHDL 
 

Rutuja R. Taksande1, Prof. Mangesh N.Thakare2, Prof. Girish D. Korde3 

PG Student [VLSI], Dept. of EXTC, BDCOE, Sewagram, Maharastra, India1 

Associate Professor, Dept. of EXTC, BDCOE, Sewagram, Maharastra , India2 

Assistant Professor, Dept. of EXTC, BDCOE, Sewagram, Maharastra, India3 

 
ABSTRACT: A Fast Fourier transform algorithm computes the discrete Fourier transform of a sequence, or it’s 
inverse. Fourier analysis converts a signal from its original domain (often time or space) to a representation in the 
frequency domain  and vice versa. This Paper presents design, synthesis and simulation of floating point adder, 
subtractor and multiplier unit which will be later on used in the design of FFT architecture. These three modules will be 
required for the design of floating point complex number multiplier. The coding has been done in VHDL and design, 
synthesis and simulation will be done using XILINX ISE 14.5. The delay obtained for floating point adder is 12.064ns, 
floating point subtractor is 14.633 ns and floating point multiplier is   18.623 ns. 
 
KEYWORDS: Fast Fourier Transform, Floating point arithmetic, XILINX ISE 14.5i, VHDL. 
 

I.INTRODUCTION 
 

The FFT is one of the most commonly used digital signal processing algorithm. Recently, FFT processor has been 
widely used in digital signal processing field applied for communication systems. FFT processors are key components 
for an orthogonal Frequency Division Multiplexing (OFDM) based wireless broadband communication system; it is 
one of the most complex and  intensive computation module of various wireless standards PHY layer.[1] 
Floating point presents a system for representation of numbers that can be too small or too large to be represented in the 
form of integers. Representation of floating point numbers is able to retain its accuracy and resolution as compared to 
representation of fixed point numbers. The numbers are represented in scaled form in multiple of binary base. For 
representation of the number, significant digit is multiplied by its base with power of exponent. Whereas for 
representing floating point numbers, IEEE 754 standard is used in digital system.  
For increasing the instruction throughput, pipeline technique is used in the design of computers and various digital 
electronic devices. The idea behind this is to split the processing of a computer instruction into a series of independent 
steps, with storage stage at the end of each step. This will give faster speed for the execution of instruction as executing 
complete program at a time is better than executing instruction one by one. In pipeline technique, each step carrying 
data at once and each step fed the output to the next so that at idle cycle will not be generated and after performing few 
steps output is available at each clock execution. Pipeline implementation requires various phases of floating point 
operations to be separated. We have presented VHDL based floating point ALU design, synthesis and simulation. This 
will help us for the description, verification and hardware realization of the design. VHDL (VHSIC Hardware 
Description Language) is widely used standard and has numerous capabilities that are perfectly suited for various 
digital designs. The design, synthesis and simulation of the proposed design have been done for high speed. [2] 
 
 
 
 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    84          

II.IEEE 754-2008 ARITHMETIC 
 

IEEE standard 754 floating point is the most common representation today for real numbers on computers, including 
Intel-based PC’s, Macintoshes, and most UNIX platforms. The IEEE standard for floating point arithmetic is most 
widely used standard for floating point computation and it is followed by many software and hardware implementation. 
Many computer languages allow or require that some or all arithmetic be carried out using IEEE 754 formats and 
operations. Similarly, IEEE standard for binary floating point arithmetic (IEEE 754-2008) is most widely used standard 
for floating point computation and it is followed by many CPU and FPU implementation. 
The 32-bit format for IEEE 754-2008 standard is as follows; 
 
 
 
                                              
 

Fig.1 IEEE 754-2008 Standard’s Single Precision Format 
 

The IEEE 754-2008 standard’s 32-bit single precision floating point format is as shown in figure above. It consists 
of three field’s viz. Sign field of 1-bit, Exponent field of 8-bits and Significant/Mantissa field of 23-bits. 

I. The Sign Field 
The sign bit is as simple as it gets, it is of single bit in size. ‘0’ denotes a positive number and ‘1’ denotes negative 

number. 
II. The Exponent Field 

The exponent field is of 8-bit in size. This field needs to represent both positive and negative exponents. To do this, a 
bias is added to the actual exponent in order to get the stored exponent. For IEEE single precision floats, this value is 
127, since exponent field is of 8-bit, therefore by using the formula 2n-1 – 1, we can easily calculate the bias value, 
where ‘n’ is the exponent’s bit. Hence , 28-1 – 1 = 27 – 1 = 128 – 1 = 127. Thus, an exponent of zero means that 127 is 
stored in the exponent field.. Similarly, exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers. 
For double precision i.e. 64-bit, the exponent field is 11-bits and has a bias of 1023. 

III. The Significand/mantissa 
The mantissa, also called as significand, represents the precision bits of the number. It is composed of an implicit 
leading bit and the fraction bits. 
To find out the value of the implicit leading bit, consider that any number can be expressed in scientific notation in 
many different ways. For example, the number 5 can be represented as any of these: 
5.00 x 100 
0.05 x 102 
5000 x 10-3 
In order to maximize the quantity of numbers which are represented, floating point numbers are typically stored in 
normalized form. This basically puts the radix point after the first non-zero digit. In normalized form, 5 are represented 
as 5.0 x 100. 
From the above discussion we can say that, 

 The sign bit is 0 for positive numbers, 1 for negative numbers. 
 The base of exponent is 2. 
 The exponent field contains 127 plus the true exponent for single precision, or 1023 plus the true exponent for 

double precision. 
 The first bit of significand/mantissa is typically assumed to be 1.f, where ‘f’ is the field of fraction bits.[3] 

 
 

 

S E x p o n e n t S i g n i f i c a n d / M a n t i s s a  
 (31)        (30 to 23)                          (22 to 0) 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    85          

III.FLOATING POINT CONVERSION 
 
The steps for conversion of a decimal number into floating point number or to write a decimal number into IEEE 754 
format are as follows; 
If number is positive then the sign bit is 0, otherwise 1. 
 Convert the decimal number into binary number. 
 Write it into standard form. 
 Calculate its exponent. 
 Use formula 2n-1-1, where n is the exponent bits. 
 Add exponent to it for biasing. 
 Convert the exponent into binary. 
 Finally, write the number i.e. sign, significand/mantissa and exponent bits into the standard IEEE 754 format. 

Let us see an example that how to write a decimal number into IEEE 754 single precision floating point format. 
Example: - Write (2345.125)10 in IEEE 754 format. 
Steps:- 
Convert decimal number into binary number (2345.125)10 = (100100101001.001)2 
 Write the obtained number into Standard Form = 1.00100101001001x1011 
 Calculate its Exponent = 11 
 Biased the number, 2n-1-1 = 28-1-1 = 128-1 = 127 
 Add exponent to the true exponent, 11+127 = 138 
 Convert decimal exponent into binary exponent (138)10 = (10001010)2 
 The number obtained is 1.00100101001001000000000 x 2138  .[6] 
 
 
 

 
 
 

Fig. 2 Conversion of Decimal to Floating Point Number 
 

IV.ARITHMETIC OPERATIONS PERFORMED BY IEEE 754 STANDARDS 
 

[1] Floating Point Addition / Subtraction Algorithm 
Assuming that the operands are already in the IEEE 754 format, performing floating point addition / subtraction:  
Addition = X + Y = (Xm x 2Xe) + (Ym x 2Ye) or 
Subtract = X - Y = (Xm x 2Xe) - (Ym x 2Ye) 
This algorithm involves the following steps: 
(i) Align binary point 

 Initial result exponent: the larger of Xe, Ye. 
 Compute exponent difference: Ye – Xe. 
 If Ye >Xe Right shift Xm that many positions to form Xm 2 Xe - Ye. 
 If Xe> Ye Right shift Ym that many positions to form Ym 2 Ye - Xe. 

(ii) Compute sum of aligned mantissas 
 Xm2 Xe-Ye + Ym or Xm + Xm2 Ye-Xe. 

(iii) If normalization of result is needed, then a normalization step follows 
 Left shift result, decrement result exponent (e.g., if result is 0.001xx…) or 
 Right shift result, increment result exponent (e.g., if result is 10.1xx…) Continue until MSB of data is 1. 

(iv) Check result exponent 
 If larger than maximum exponent allowed return exponent overflow. 

0 10001010 00100101001001000000000 

(31)      (30 to 24)                       (23 to 0) 

Sign       Exponent               Significand/Mantissa 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    86          

 If smaller than minimum exponent allowed return exponent underflow. 
(v) If result mantissa is 0, may need to set the exponent to zero by a special step to return a proper zero.[3] 

The flow chart for floating point addition / subtraction is shown in figure below. 

 
Fig. 3 Flow Chart for Addition / Subtraction [3] 

 
The block diagram of floating point adder is shown in the figure 4. There will be XOR operation on Sign bits of the two 
numbers, exponents get normalized and mantissa gets added/subtracted to get the required floating point 
addition/subtraction. 
 

 
                                     Fig.4. Block Diagram Of Standard Floating Point Adder/subtractor [4] 
 
[2] Floating Point Multiplication Algorithm 
Assuming that the operands are already in the IEEE 754 format, performing floating point multiplication: 
Multiplication = R=X * Y = (-1)Xs (Xm x 2Xe) * (-1)Ys (Ym x 2Ye) 
The flow chart for floating point multiplication is shown in figure below. 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    87          

 
Fig.5 Flow Chart for Multiplication [3] 

 
This algorithm involves the following steps: 

(i) If one or both operands is equal to zero, return the result as zero, otherwise. 
(ii) Compute the sign of the result Xs XOR Ys. 
(iii)  Compute the mantissa of the result: 
 Multiply the mantissas: Xm * Ym. 
 Round the result to the allowed number of mantissa bits. 
(iv) Compute the exponent of the result: 

              Result exponent = biased exponent (X) + biased exponent (Y) – bias. 
(v) Normalize if needed, by shifting mantissa right, incrementing result exponent. 
(vi) Check result exponent for overflow/underflow: 
 If larger than maximum exponent allowed return exponent overflow. 
 If smaller than minimum exponent allowed return exponent underflow. 
  

 
Fig.6 Block Diagram of Standard Floating Point Multiplier [5] 

 
The block diagram of floating point multiplier is shown in the figure 6. There will be XOR operation on Sign bits of the 
two numbers, exponents get normalized and mantissa gets multiplied to get the required floating point multiplication 
 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    88          

V. SIMULATION RESULTS 
 

Fig.10, Fig.11, Fig.12 shows the simulation result of floating point adder, floating point subtractor, floating point 
multiplier.  Delay obtained by floating point adder is 12.064 ns. Delay obtained by floating point subtractor is 14.633 
ns and Delay obtained by floating point multiplier is 18.623 ns. 
 

FLOATING POINT ADDER 
 

 
                                                    Fig. 10Simulation result of Floating Point Adder 
 
Figure 10 shows floating point addition of two inputs, inputs are “01000101000100101001001000000000” and 
“00111111010000000000000000000000” and the obtained output is “01000101000100101001111000000000”. 
 

FLOATING POINT SUBTRACTOR 
 

 
Fig.11 Simulation result of Floating Point Subtractor 

 
Figure 11 shows floating point subtraction of two inputs, inputs are “01000101000100101001001000000000” and 
“00111111010000000000000000000000” and the obtained output is “01000101000100101001111000000000”. 
 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    89          

FLOATING POINT MULTIPLIER 
 

 
Fig.12 Simulation result of Floating Point Multiplier 

 
Figure 12 shows floating point multiplication of two inputs, inputs are “01000101000100101001001000000000” and 
“00111111010000000000000000000000” and the obtained output is “01000101000100101001111000000000”. 
 

Table 1: Example of Floating Point Operation 
  

INPUT-1 
 

INPUT-2 
 

OUTPUT 
 

DELAY 
 

FPA 
 

 
010001010001001010010010

00000000 

 
001111110100000000000000000

00000 

 
01000101000100101001111000

000000 

 
12.064ns 

 
FPS 

 

 
010001010001001010010

01000000000 

 
0011111101000000000000000

0000000 

 
01000101000100101001111000000

000 

 
14.633ns 

 
FPM 

 
010001010001001010010

01000000000 

 
0011111101000000000000000

0000000 

 
01000101000100101001111000000

000 

 
18.623ns 

 
Fig.10, Fig.11, Fig.12 shows the simulation result of floating point adder, floating point subtractor, floating point 
multiplier.  Delay obtained by floating point adder is 12.064 ns. Delay obtained by floating point subtractor is 14.633 
ns and Delay obtained by floating point multiplier is 18.623 ns. 

 
VI.CONCLUSION 

 
In this paper, we use top-down design method in which we design floating point adder/subtraction and floating point 

multiplier. VHDL language has been used to describe the system. The 32-bit single precision floating point 
adder/subtraction& multiplier has been designed. The design is verified through exhaustive simulations. The design, 
synthesis and simulation of 32-bit single precision floating point adder/subtraction & multiplier have been achieved 
using Xilinx 14.5i ISE tool.  

Future work is to include this design Complex number multiplier based on FFT Architecture. If we suppose to 
implement this design using FPGA technology it is possible to upgrade the system with new features as per user 
requirements. The hardware complexity can be reduced and integration of different circuits in a single chip can be 
possible on FPGA kit 

 
 

http://www.ijareeie.com


 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijareeie.com  

Vol. 6, Issue 1, January 2017 

Copyright to IJAREEIE                                                    DOI:10.15662/IJAREEIE.2017.0601011                                                    90          

REFERENCES 
 
[1] Soundarya .G, Naveen ,V.Jagan and Rao,D.Tirumala,“ Implementation of   32-point FFT processor for OFDM system”.© Springer India 

2015L.C. Jain et al. (eds.), Computational Intelligence in Data Mining -Volume 3,Smart Innovation, Systems and Technologies 33, DOI 
10.1007/978-81-322-2202-6_20. 

[2] Singh,R.R Tiwari Asish , Singh,Vinay.Kumar, Tomar,Geetam. S, “VHDL environment for floating point Arithmetic Logic Unit - ALU design 
and simulation”, 2011 International Conference on Communication Systems and Network Technologies, 978-0-7695-4437-3/11 $26.00 © 2011 
IEEE. 

[3] Itagi,MahiP.a and Kerurb S. S, “Design and Simulation of Floating Point Pipelined ALU Using HDL and IP Core Generator”, International 
Journal of Current Engineering and Technology, ISSN 2277 – 4106 ©2013 INPRESSCO. 

[4] Dhobale. Rupali, Chaturvedi .Soni , “Implementation of 32 Bit Binary Floating Point Adder Using IEEE754 Single Precision Format” , IOSR 
Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 1, Ver. I (Jan-Feb. 2015), PP 50-53, e-ISSN: 2319–4200, p-ISSN No. : 
2319–4197. 

[5] Sachan.Pragati, “VHDL Implementation of floating point multiplier based on Vedic multiplication Technique”, International Journal of 
Science, Engineering and Technology, volume 3, issue 4, 2015.                                            

[6] http;//profile.iiita.ac.in/bibhas.ghoshal/lecture_slides_coa/L3-FP_    Representation.pdf. 
 
  

http://www.ijareeie.com

