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ABSTRACT: In this paper Frequency deviations are associated with renewable energy sources because of their 
inherent variability. We consider a micro grid where fossil fuel generators and renewable energy sources are combined 
with a reasonably sized, fast acting battery-based storage system. We develop ANN control strategies for frequency 
deviation reduction, despite the presence of significant (model) uncertainties. They are different from traditional 
centralized electricity networks which transmit vast amounts of electrical energy. Across long distances at very high 
voltages however they are similar to utility scale power distribution grids. It is critical to maintain the F&V deviations 
within a small range to satisfy military operating requirements. High-speed, grid-attached storage systems such as 
batteries have been proposed for reducing F&V variability. 
 
KEYWORDS: Energy storage, microgrid, ANN control algorithms, Renewable Energy source. 
 

I.INTRODUCTION 
 

To improve the efficiency of micro grids and to reduce fossil fuel usage and pollution renewable energy source may be 
integrated with traditional micro grids. Renewable Energy sources include photovoltaic power hydro power and wind 
power. These are clean and abundantly available energy sources. For critical installations such as military bases, 
security concerns have increased interest in utilizing micro grids that allow the facility to operate in islanded mode for 
extended period switch renewable energy sources involved. 
These are clean and abundantly available energy sources. Due to the cost effectiveness of wind turbine generation 
(WTG), it is one of the fastest growing clean power sources. However, since the output power of WTG is proportional 
to the cube of the (varying) wind speed, it significantly impacts system stability, and can cause large frequency and 
voltage (F&V) deviations in a microgrid. In this paper we will focus on control of (real) power to reduce frequency 
deviations. 
For critical installations such as military bases, security concerns have increased interest in utilizing microgrids that 
allow the facility to operate in islanded mode for extended periods with renewable energy sources involved. It is critical 
to maintain the F&V deviations within a small range to satisfy military operating requirements. High-speed, grid-
attached storage systems such as batteries have been proposed for reducing F&V variability. However, due to high cost, 
battery sizes must be minimized and therefore may saturate during transients, aggravating F&V deviations. In such 
situations, conventional control approaches are no longer sufficient to constrain these deviations within a small range, 
and at the same time limit the battery size. More sophisticated ANN control algorithms are needed to achieve better 
performance despite unexpected disturbances and model uncertainties.  
Our work develops ANN control strategies for both the battery and conventional generation systems, with controllers 
designed to minimize battery size while at the same time significantly reducing frequency variation, despite variable 
loads in the microgrid, and the incorporation of a WTG source. Our controllers are designed to cope with load 
transients, WTG output fluctuations, model uncertainties and measurement noise/errors 
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Fig. 1. Structure of microgrid with attached storage system. 

 
II. SYSTEM SETUP AND MODELING 

 
A typical setup of a microgrid with storage system is shown in Fig. 1. The energy sources include both conventional 
and renewable generation systems. On the common bus-bar are energy sources, variable loads, and also a battery-based 
storage system. The green blocks indicate that particular component is under control for desired performance. This 
system can be readily extended into more complex microgrids, with additional generators, loads, bus-bars, transmission 
lines, and storage systems. 
The essential idea is to increase the usage of renewable energy, and so reduce the fossil fuel consumption, while at the 
same time maintaining system stability. Here system stability is reflected by incurring only limited system frequency 
deviations, despite the presence of significant transients. Low frequency load transients are handled by conventional 
generators (utilizing diesel or natural gas engines as their prime mover). The attached storage system can react much 
more quickly to load transients, and so it is primarily used for suppressing the high frequency load transients caused by 
renewable energy sources. In orderto maintain the nominal frequency in such a system, more advanced control 
techniques are required to deliver the system performance requirements. 
In order to minimize the frequency deviation ( ), a mathematical model is used for system analysis and controller 
design. This model consists of three parts: conventional generator (CG), storage system (SS) and Wind Turbine 
Generator (WTG).  

 
Fig. 2. Conventional generator (Small Power System) model 
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Fig. 3. Battery model 

 

 
Fig. 4. Wind turbine generator model. 

 
The corresponding Simulink™models are shown in Figs. 2 – 4. Note that in order to limit the model complexity, 
simple transfer functions models are used for each of these blocks in the controller design process. However these 
models still capture the essential power/frequency tradeoffs in such systems. Since is caused by the imbalance between 
the power generated and the power consumed by the load, signals in the model are first normalized to per-unit (pu), and 
then shifted to deviations around ‘0’ (corresponding physically to deviations from nominal 60 Hz [11]). Hence, the load 
variation, the SS output variation and WTG output variation are denoted as: ∆Pbatt, ∆Pload and ∆Pwind  respectively. 
These three signals are summed at the summing block in the CG model along with the CG output variation ∆Pgen. 
Note, during the charging or discharging periods, a battery based storage system acts as load or generation 
correspondingly. 
In our model, ∆Pbatt and ∆Pbgen are controlled power deviations, as shown in Figs. 2 and 3; the control signals are ‘ 
ug’ and ‘ubatt ’ respectively. ∆f is considered as the error signal. The controller receives measurements ‘y ’ and outputs 
actuation/ control signals ‘ ’u. Although ∆Pbatt  is a controlled output, the output is limited by a saturation block so as 
to prevent fast charge and discharge. In addition, the State of Charge (SoC) variation of the SS is modeled by 
integrating its output power deviation. It is controlled indirectly by commanding ∆Pbatt. 
Meanwhile, ∆Pload and ∆Pwind are considered as perturbations to the system in the robust controller synthesis 
methodology. There is no control over these two signals. Here, the controlled outputs are used for minimizing ∆f, 
regardless of how the perturbations vary. Other renewable sources can be handled in a similar fashion. 
A real wind profile is used here with a sample time of 50 ms simulated for 500 s. The WTG actual output power ( 
Pwind) is normalized by its rated output ( Pwg) and again shifted to deviations around “0” (in the linear model). is “0” 
unless the angular speed of the gearbox output is higher than the synchronous angular speed. A fixed pitch angle of 10 
is used. 
Our controller does not command the WTG, rather the WTG produces power according to the given wind speed profile 
(and hence acts as an unknown “disturbance” as far as our system is concerned). Tip speed ratio (λ ), power coefficient 
( Cp), windmill output (Pwm ), Slip ( s) and WTG output power ( Pwg) as shown in Fig. 4, and are given as: λ= 
Rw.w/Vwind ;Cp = f(λ , β )[14]; Pwm = Cp = f(λ , β ) Vw3ρA/2 ; Ss = ( w0 w)/w0;Pwg = -3V2 Ss ( 1+Ss)R2/( R2 – 
SsR1)2 + (X1 +X2)2,where is the wind speed, A is windmill rotor cross section area, w0 is synchronous angular speed, 
and w  is angular rotor speed for a windmill.  
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III.ENERGY STORAGE 
 

Power demand varies from time to time and the price of electricity changes accordingly. The price for electricity at 
peak demand periods is higher and at off-peak periods lower. This is caused by differences in the cost of generation in 
each period. During peak periods when electricity consumption is higher than average, power suppliers must 
complement the base-load power plants with less cost-effective but more flexible forms of generation, such as oil and 
gasify red generators. During the off-peak period when less electricity is consumed, costly types of generation can be 
stopped. This is a chance for owners of EES systems to benefit financially. From the utilities’ viewpoint there is a huge 
potential to reduce total generation costs by eliminating the costlier methods, through storage of electricity generated by 
low-cost power plants during the night being reinserted into the power grid during peak periods. With high PV and 
wind penetration in some regions, cost-free surplus energy is sometimes available. This surplus can be stored in EES 
and used to reduce generation costs. Conversely from the consumers’ point of view EES can lower electricity costs 
since it can store electricity bought at low off peak prices and they can use it during peak periods in the place of 
expensive power. Consumers who charge batteries during off-peak hours may also sell the electricity to utilities or to 
other consumers during peak hours. 
 

IV. ANN STURUCTURES 
 
Artificial Neural networks (ANN) are simplified models of biological neuron  system. It consists of a massively parallel 
distributed processing system made of highly interconnected neural computing elements called as “Neurons”, which 
has the ability to learn and thereby acquire knowledge. The architecture is inspired from structure of cerebral cortex of 
brain (Tsoukalas and Uhrig, 1997). The pioneering work of McCulloh and Pitts (1943) was foundation of NN 
architectures. Followed by this was Hebb (1949) who presented a mechanism for learning in biological neurons. ANN 
comprises of number of neurons which forms the basic processing unit. Each neuron is further connected to other 
neurons by links. Every neuron receives number of inputs which are modified by ‘weights’. The synaptic weights 
would either strengthen or weaken the signal which is processed further. To generate the final output the sum of the 
weighted output is passed on to a non-linear filter called as ‘activation function’ or ‘Transfer function’ or ‘Squash 
function’ , plus a threshold value called ‘bias’ which releases the output. Figure 1 shows the model of ANN.  
 

 

 
Fig 1: ANN model 

 
 The function of neural network is determined by structure of neurons, connection strengths, and the type of processing 
performed at elements or nodes. In classification tasks, the output being predicted is a categorical variable, while in 
regression problems the output is a quantitative variable. Neural network uses individual examples, like set of inputs or 
input-output pairs, and appropriate training mechanism to periodically adjust the number of neurons and weights of 
neuron interconnections to perform desired function. The learning methods for NN can be classified as: 9 Supervised 
learning, wherein the input and output patterns are provided. A teacher is assumed to be present during learning 
process, when a comparison is made between network’s output and correct expected output, so as to determine the 
error. 9 Unsupervised learning, wherein the target output is not presented to the network. The system learns by itself by 
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adapting to the structural features in input patterns. 9 Reinforced learning, a teacher though available does not present 
the expected answer but only indicates if the computed output is correct or incorrect. The information helps in learning 
process. 
 

V. RESULTS AND DISCUSSION 
 

Frequency deviation with battery storage 

 
 

Battery , load, generator,  wind power 

 
 

Load & wind deviation 

 
 

With Robust Controller & with Uncertainity—simulation diagram: 
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Frequecny deviation with only PID controller 

 
 

Frequency deviation,With 0% battery 

 
 

Frequency deviation,With 3% battery 

 
 
 

Frequency deviation,With 100% battery 
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10% uncertainity in diesel geneerator mass & wind gust--with PID 

 
 

10% uncertainity in diesel generator mass & wind gust--with u-synthesis 

 
 
 
With ANN: 
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Frequecny deviation with only ANN controller 
 

 
 

VI. CONCLUSION 
 

In this paper, we have shown that by combining a small battery with a sophisticated robust control algorithm, one can 
significantly reduce system frequency deviation in a microgrid. In other words, specifying a certain allowable 
frequency deviation, the ANN control approach allows us to deliver that performance level whilst utilizing a smaller 
battery. Since battery- based storage systems are very expensive, this is a significant advantage. 
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