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ABSTRACT: Even though real world analysis is non-linear and uncertain, most of the power system network analyses 
are the approximation rather than the worst case results. One of the power system network analysis mechanisms which 
is based on deterministic input is a load flow analysis.  Due to the penetration of renewable energy sources and the 
environmental temperature change, power system network inputs are no longer constant rather varies between upper 
and lower extremes constantly. The main load flow analysis constants considered to vary with the variation of input are 
the active and reactive power at the generator and the buses.  In order to get a load flow solution for the varying input 
power a probabilistic load flow analysis based on complex affine arithmetic (CAA) is proposed and tested on standard 
IEEE 57 bus systems. The result is validated by its mid way conservation of the deterministic load flow analysis result 
and a probabilistic Monte Carlo approach. 
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I.INTRODUCTION 

Load flow analysis is the basics tools which helps a power engineer to get knowledge about the steady state 
operation of a power system network. Load flow analysis gives information about bus voltage and branch power flow 
without the consideration of the transient nature of the network. As a result its non consideration of transient state of 
the network, it contains a nonlinear mathematical equations without differentiation.   

 
The application of digital computer in solving load flow analysis started in 1950s. So far a lot of mechanism has 

been developed. The developed mechanisms importance is measured by their convergence properties, memory usage, 
computing efficiency, convenience and ease of implementation. The solution process always has an iterative approach. 
Some algorithms converge with low iteration while the other takes several iterations to converge. The number of 
iterations for different algorithm does not show the memory consumption. Some with higher iteration may consume 
less memory than other which converges with a limited number of iterations. Similarly, the speed of convergence is not 
directly related to the number of iterations. For example a Gauss-Seidel algorithm which converges in three iterations is 
speedier than a Newton-Raphson based algorithm which converges with two iterations.  

 
Probabilistic load flow analysis roots its base from deterministic power flow analysis. One of the probabilistic load 

flow analysis mechanism is called Monte Carlo simulation. Monte Carlo simulation is based on the statistical data of a 
given system containing a random number with in the desired bound. It handles both deterministic and probabilistic 
problems whether they are concerned or not concerned with the end results or the nature of the process. Monte Carlo 
simulation produces distributions of possible outcome values. When a probability distribution is used, variables can 
have different chances of occurrence with different outcomes.  Probability distributions are a realistic way of describing 
uncertainty in different uncertain systems.  

 
In solving probabilistic problem a random numbers are chosen or generated using digital machines within the 

boundary of the input variable and the original problem is simulated for each random variables.  The simulation may 
range from few hundreds to thousands based the generated random variables. The number of the random variables 
depends on the convergence of the end results.  If increasing the number of random variables has no effect on the 
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overall maximum and minimum outputs, the simulation is said to be converged at the least number of the random 
variables [3]. Since its invention Monte Carlo simulation has been used for a system, with ordinary mathematics to 
calculus equipped with some sort of uncertainty. The simulation approach is used in a wide area of fields including 
Engineering, Finance, Medicine, Physics, Chemistry Biology and etc. In power system engineering it has been used to 
solve a problem containing internal or external uncertainty and provides a bounded output.  

 
Probabilistic power flow analysis has been implemented using Monte Carlo simulation mechanism either to validate 

other methods or as an independent mechanism in since its invention. Some among many works done on the area of 
power system analysis in general and load flow analysis in particular will be discussed.  
Several methods have been applied to deal with uncertainties in engineering in general and in probabilistic load flow 
analysis   in particular since 17th centuries by the time the presence of uncertainty and its effect in the end result is first 
noted [4].  
 
Among different numerical and analytical methods which have been used to solve probabilistic load flow analysis 
Monte Carlo approach is the best known one in dealing with uncertainties. It become popular due to its flexibility, 
applicable both in linear and non linear system of equations, it can able to deal with large equations with high variance 
and etc. It is noted that it suffer from low speed convergence with incurs high computational burden specifically for a 
system which convergence with large number of random variables [3].  
 
The mechanism of solving a probabilistic load flow analysis by Monte Carlo approach is by repeated simulation in 
order to get an accurate result. Monte Carlo approach is simply a mathematical technique which considers the presence 
of uncertainty by randomly assigning their value within a given bound to solve a probabilistic load flow analysis.  It 
evaluates iteratively a deterministic load flow analysis using a set of random numbers. Monte Carlo approach is better 
used when the mathematical model is very complex, non linear or containing a number of uncertain variables.  When it 
is coded in digital computer the simulation may take 10th thousands or more of random variable depending on the 
mathematical model converge behaviour.   Due to this problem its practical applicability is limited to some areas only 
[4].  Though Monte Carlo approach is slow for practical application, it is still used by researchers as the best 
mechanism for comparing the validity of new methods in the area of uncertain system. During comparing any method 
to Monte Carlo approach, all assumption made regarding uncertainty for the proposed method must be applied in 
simulating the Monte Carlo technique [5]. 
 
The second mechanism of probabilistic load flow analysis is based on interval mathematics. The application of Interval 
Arithmetic to solve probabilistic power flow analysis has been studied by many researchers. Since Monte Carlo 
approach is tedious, due to its high time and memory consumption to converge, researchers found Interval Arithmetic 
advantageous.  The core point behind the application of any probabilistic and fuzzy system to analyse a power system 
network is the presence of uncertainty. Interval Arithmetic based power flow analysis not only considers the presence 
of uncertainty, but also provides a bounded interval inclusive of all possible solutions. A Newton operator is a key to 
solve a non-linear Interval Arithmetic based power flow equations, while a Gauss-Seidel approach is used to solve the 
linear equations. Using Newton operator and Gauss-Seidel approach in solving an interval based power flow problem 
gives reliable result [6].   
 
To generalize that interval arithmetic based load flow analysis has a quality of low memory consumption and fast 
convergence in comparison to Monte Carlo simulation. It also effectively considers input uncertainties weather it is due 
to load or generation variation.  Though it has the aforementioned advantages over Monte Carlo simulation, its 
dependency problem is a non ignorable drawback.  As a result another mechanism based on CAA has the ability to 
solve the aforementioned drawbacks of both the Monte Carlo and interval arithmetic. The application of real affine 
arithmetic for load flow analysis based on Newtons power is dealt in detain in [1, 7]. This paper proposes a Gauss-
Seidel load flow analysis based CAA for uncertain system network. The organization this paper is as follows: Section 
two discuses about CAA, section three deals about CAA based load flow analysis, Section four gives result and 
discussion and finally section five is dedicated to conclusion.  
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II. BASICS OF COMPLEX AFFINE ARITHMETIC 

 
Like any algebraic function AA functions has a set of rule governing them to give a desired result. Any number is an 
element of either a real number or a complex number. The general representation of CAA function is given by (1) [8-
11]. 
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From (1) â represents the affine function, 0a represents the central value, ia represents the partial deviation and i
represents the noise (symbolic) variable whose value is bounded by [-1, 1] interval.  The affine to interval and the 
interval ],[ aa to affine is given by (2) respectively [9]. The common affine and non affine operation based on two 
affine functions in (3) for a constants’’ is given by (4) and (5) respectively.  
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Any other CAA function operation, for a single variable k̂ , is approximated by a Chebyshev formula given by (6). The 
detail of (6) can be found from [8-11]. 
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Since (4-5) are non affine operation they append with a new symbolic variable 1n  which is unique from the other 
and represents all non affine approximations [8-11]. 
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III. CAA BASED LOAD FLOW ANALYSIS 

 
The CAA based load flow analysis initially formulated from the general Gauss-Seidel equation. The equation given by 
(7) represents the bus CAA voltage, the active and reactive power respectively [12]. Initially the central voltage and 
angle is found from deterministic analysis and made to be interval using percent of uncertainty which is considered in 
this paper to be 20%. The interval is converted to CAA using interval to affine conversion in (2b). In the same way the 
deterministic real and reactive power for each bus made to be interval using 20 % uncertainty and converted to CAA 
using (2). The converted CAA for voltage, real and reactive power for each bus is shown in 7 (a-c) respectively. 
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where iV̂  iP̂  and iQ̂  are the CAA form of the voltage, the real and reactive power respectively. The terms Vi,0 and 
(Pi,0, Qi,0)  are the central values found from deterministic load flow analysis without uncertainty and deterministic 
inputs respectively. The partial deviation, Vi, Pi,0 and Qi,0 are generated due to the presence of uncertainty according to 
interval to affine conversion in (2). The symbolic variables ip,  and iq,  denotes uncertainty due to active and reactive 
power variation respectively. The CAA voltage shares both the uncertainty due to real and reactive power equally as 
shown in (7a). Applying all affine and non affine operation from 1-6 and using the inputs in (7) the CAA Gauss-Seidel 
voltage equation in (8) results the complex equation in (9).  
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The central term in (9) found from deterministic analysis and the partial deviations are directly from the analysis of (8). 
Equation (9) contains central value, partial deviation from active and reactive power uncertainty and additionally it 
contains approximation errors coefficients which come from the application of non affine operations. 
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In (9) the central term is found from base load flow analysis without uncertainty and is always constant. As a result it 
cannot be optimized rather taken as it is. The partial deviations angle ne,  found from the conversion of CAA partial 

deviation of (9) into angle. Both the partial deviations angle ( ne, ) and voltage ( neV , ) for optimization, omits the 
central term. Since Voltage has a maximum limit in a bus the partial deviations are optimized in a way not violate the 
bus voltage limits. Assuming ‘p’ is the percent of uncertainty with ul=(p/2)*(Vi,lim-Vi,0) and an= p/2. The maximum 
angle uncertainty limit is considered to be the percent of uncertainty initially taken [2, 12]. The final optimization 
equation based on the partial deviation results of (9) become as shown in (10-11).  
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The procedure starting from (7) to (11) is repeated until a convergence is reached. In order to test the proposed result an 
IEEE bus system is used as shown in the next section.  
 

IV. RESULT AND DISCUSSION 
 

The IEEE-57 bus system is used to test the proposed method. A 20 % real and reactive power uncertainty is considered 
and the result of the bus voltage magnitude and angle including the deterministic output is shown in Fig 1 and 2 
respectively.  
 

 
Fig 1 Bus Voltage Magnitude in per unit for the two uncertain and fixed system analyses 
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In Fig 1 and 2 the gray plot contains the 3000 results of the Monte Carlo iteration. For Monte Carlo approach to 
converge higher number iterations are mandatory. As seen from the two figures the proposed affine arithmetic 
approach conserves the Monte Carlo and the fixed results. 
 

 
Fig 2 Bus Voltage Angle in rad for the two uncertain and fixed system analyses 

 
Since uncertainty based analysis is to find the worst case response in this case CAA based result is more representative 
than the Monte Carlo approach. In terms of convergence the CAA based load flow analysis converges in two iterations 
while the Monte Carlo approach takes 3000 iteration to provide unchanging extreme boundary results. 

 

VI.CONCLUSION 
On this paper a CAA based load flow analysis for a system containing variable generation and load is proposed. The 
proposed method is tested on an IEEE bus system and satisfactory comparison methods, using Monte Carlo and fixed 
system analysis mechanism, are performed. The result of the proposed algorithm perfectly conserves the Monte Carlo 
approach based outputs. Additionally, the ordinary load flow analysis result, with no consideration of uncertainty, 
conserved in the mid of the uncertain system results. The inclusion of the both the fixed at the mid and the Monte Carlo 
output by the CAA result is due to the nature of affine arithmetic to consider round of and truncation error better then 
the two. The proposed method can be used in load flow analysis in planning stage for reliable power delivery during 
worst case scenario. 
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