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ABSTRACT: The problem of recovering patterns and structures in images from corrupted observations is encouraged 
in many engineering and science applications. In many practical image problems observed images often contain noise 
that should be removed beforehand for improving the visual pleasure and the reliability of image. Images may be 
contaminated with various types of noise. Among them the impulse noise is one of the most frequently happened 
noises. So here propose a unified framework to perform progressive image recovery based on hybrid graph laplacian 
regularized regression. First constructs a multiscale representation of the target image by laplacian pyramid then 
progressively recovers the degraded image in the scale space from coarse to fine. Within each scale a graph Laplacian 
regularization model represented by implicit kernel is learned which simultaneously minimizes the least square error on 
the measured samples and preserves the geometrical structure of the image data space. Between two successive scales 
the proposed model is extended to a projected high-dimensional feature space through explicit kernel mapping in which 
the local structure regularity is learned and propagated from coarser to finer. Both local and nonlocal regularity 
constraints are exploited to improve accuracy of noisy image recovery. 
  
KEYWORDS: Image denoising, graph laplacian, local smoothness, non-local self-similarity, implicit kernel, explicit 
kernel. 
 

I.INTRODUCTION 
 

Noise means the pixels in the image show different intensity values instead of true pixel values. Noise is a random 
variations of image Intensity and visible as grains in the image.  It may produce at the time of capturing or image 
transmission. Noise removal algorithm is the process of removing or reducing the noise from the image. The noise 
removal algorithms reduce or remove the visibility of noise by smoothing the entire image leaving areas near contrast 
boundaries. There are several ways that noise can be introduced into an image, depending on how the image is created. 
The performance of an image recovery algorithm largely depends on how well it can employ regularization conditions 
or priors when numerically solving the problem, because the useful prior statistical knowledge can regulate estimated 
pixels. Therefore, image modeling lies at the core of image denoising problems. One common prior assumption for 
natural images is intensity consistency, which means: (1) nearby pixels are likely to have the same or similar intensity 
values; and (2) pixels on the same structure are likely to have the same or similar intensity values. Note that the first 
assumption means images are locally smooth, and the second assumption means images have the property of non-local 
self-similarity. Accordingly, how to choose statistical models that thoroughly explore such two prior knowledge 
directly determines the performance of image recovery algorithms. Another important characteristic of natural images 
is that they are comprised of structures at different scales. Through multi-scale decomposition, the structures of images 
at different scales become better exposed, and hence more easily predicted. At the same time, the availability of multi-
scale structures can significantly reduce the dimension of problem hence make the ill-posed problem to be better posed. 
The multiscale framework provides us a wonderful choice to efficiently combine the principle of local smoothness and 
non-local similarity for image recovery. 
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In this method, a multi-scale representation of the target image is constructed by Laplacian pyramid, through which we 
try to effectively combine local smoothness and non-local self-similarity. On one hand, within each scale, a graph 
Laplacian regularization model represented by implicit kernel is learned which simultaneously minimizes the least 
square error on the measured samples and preserves the geometrical structure of the image data space by exploring 
non-local self-similarity. In this procedure, the intrinsic manifold structure is considered by using both measured and 
unmeasured samples. On the other hand, between two scales, the proposed model is extended to the parametric manner 
through explicit kernel mapping to model the interscale correlation, in which the local structure regularity is learned 
and propagated from coarser to finer scales. Moreover, in our method the objective functions are formulated in the 
same form for intra-scale and inter-scale processing, but with different solutions obtained in different feature spaces. 
The solution in the original feature space by implicit kernel is used for intra-scale prediction, and the other solution in a 
higher feature space mapped by explicit kernel is used for inter-scale prediction. Therefore, the proposed image 
recovery algorithm actually casts the consistency of local scale scheme into a unified framework. 
 

II.OPTIMIZATION BY IMPLICIT KERNEL 
 

To apply regularized regression first analyzes the nearby pixels which have same or similar intensity values. It is 
obtained through inter correlation. In order to obtain the optimal solution for the above objective function exploits a 
useful property called representer theorem. It states that minimizing of any optimization task in Hilbert space H has 
finite representation in H. According to the Representer Theorem define f(x) as 
 
                                        f(x)=∑ ,x݅)݇݅ߙ x).௡

௜ୀଵ                                                                                                                  (1)                                  
Therefore f is defined as  

              f = ൥
݂(x1)
⋮

(nܠ)݂
				൩   =    ൥

∑ ,x1)݇݅ߙ x݅)௡
௜ୀଵ

⋮
∑ ,x݊)݇݅ߙ x݅)௡
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Where K is the kernel gram matrix  
Implicit kernel gives self similarity relation among two same scale images. Through inter correlation implicit kernel is 
obtained. Denoting KL as the submatrix consisting of rows of K corresponding to those labeled samples in the set XL. 
 

III.OPTIMIZATION BY EXPLICIT KERNEL 
 

The implicit kernel induced framework addresses the problem of nonlinear estimation in a nonparametric manner, 
which relies on the data itself to dictate the structure of the model. So further explicitly map samples to a high 
dimensional feature space in order to reformulate the proposed graph Laplacian regularized model in a linear manner in 
that space. This will bring additional insights to help addressing the current ill-posed problem. 
 
                    f(x~)=∑ ,~x݅)݇݅ߙ x~).௡

௜ୀଵ                                                                                                                              (3) 
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Hybrid Graph Laplacian Regularization is an effective and efficient image impulse noise removal algorithm as 
compared with the other methods. The input space and high dimensional feature space is used as two complementary 
views to address such an ill posed problem. After comparison with other methods it is found that this algorithm 
achieves the highest PSNR value for all the tested images. In this way both local and nonlocal regularity constrains are 
exploited to improve the accuracy of noisy image recovery. 
 

IV. PROGRESSIVE HYBRID GRAPH LAPLACIAN REGULARIZATION   
 

A multi-scale representation of the target image is constructed by Laplacian pyramid which efficiently combine local 
smoothness and non-local self-similarity. Objective functions are the same for intra-scale and inter-scale processing, 
but with different solutions obtained in different feature spaces. It means the solution on the original feature space by 
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implicit kernel is used for intra-scale, and the other solution on the higher feature space mapped by explicit kernel is 
used for inter-scale. On one hand within each scale a graph Laplacian regularization model represented by implicit 
kernel is learned which simultaneously minimizes the least square error on the measured samples and preserves the 
geometrical structure of the image data space by exploring non-local self-similarity. In this procedure the intrinsic 
manifold structure is considered by using both measured and unmeasured samples. Between two scales the proposed 
model is extended to the parametric manner through explicit kernel mapping to model the inter-scale correlation in 
which the local structure regularity is learned and propagated from coarser to finer scales. Hence the proposed method 
achieves effective image recovery.  
 

 

                                           
 

Fig:1 Block diagram of proposed system 
 

Figure shows a multiscale implementation of the hybrid graph Laplacian regularization model.  Here 80% samples in 
the test image peppers are corrupted. The subscript l is used to indicate the level in the pyramid of downsampled 
images. The finest level is indicated by l = 0. The larger is l, the coarser is the downsampled  image. The highest level 
is indicated as l = L. The level is increased from 0 to L.0 indicate minimum level and L indicates maximum level. 
 
First, the level l image Il passes a low-pass filter F, which is implemented in this method by averaging the existing 
pixels in a 2 × 2 neighborhood on higher resolution. Then the filtered image is downsampled by 2 to get a coarser 
image Il+1. 
                                               
                                     Il+1 = F(Il) ↓ 2, l = 0,…… , L − 1.                                                                                                (5)                                     

 
In this way construct a Laplacian pyramid. At the coarsest scale 2, the missing samples in I2 can be recovered via the 
proposed IK-GLRR model which has been I2

^. And this estimation can be computed iteratively by feeding the 
processing resultsI2

^ to the estimator as a prior for computing the kernel distance. In practice there are two iterations 
was found to be effective in improving the processing results in such type of operations. Especially in the first iterations 
there is only coarsest noisy image I2. So construct the kernel distance by Gaussian kernel 
 
                                      k(xi, xj) = exp(||ui – uj||2 /σ2)                                                                                          (6)                            
 
Where ui and uj are the location coordinates of xi and xj respectively. The relation between local patches   bi and bj are 
centered on xi and xj   are given by    
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                 k(xi, xj) = exp(||bi – bj||2 /σ2).                                                                                                       (7) 

 
The recovered image I2

^ is then upsampled with the proposed kernel EK-GLRR model to get I1
^. I1

^can be used as a 
prior estimation for the IK-GLRR model towards a refined estimate I^

1
*.  I^

1
* can then be upconverted to I0

^ by the EK-
GLRR model. And the refined estimate I0

^ can be combined with I0 into another IK-GLRR recovery procedure towards 
the final results I^

0
*. Using the above progressive recovery based on intra-scale and inter-scale correlation gradually 

recover an image with few artifacts. 
 

V. RESULT AND DISCUSSION 
 
It can be clearly observed that the proposed algorithm achieves the best overall visual quality through combining the 
intra-scale and inter-scale correlation. The image is sharper due to the property of local smoothness preservation when 
using inter-scale correlation and the edges are more consistent due to the exploration of non-local self-similarity when 
using intra-scale correlation. This method also achieves the best objective performance among the compared methods. 
The proposed algorithm achieves the highest average PSNR value for all cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 

             
 
 
 
 

Fig 2: input image                                                              Fig 3: input image with applied impulse noise 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4:output image 
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It is clear that the output image is very similar to input image. Also it provides better performance compared to other 
methods.  
 

VI.CONCLUSION 
 

It is an effective and efficient image impulse noise removal algorithm based on hybrid graph Laplacian regularized 
regression. It utilizes the input space and the mapped high-dimensional feature space as two complementary views. The 
framework explored is a multi-scale Laplacian pyramid where the intra-scale relationship can be modelled with the 
implicit kernel graph Laplacian regularization model in input space while the inter-scale dependency can be learned 
and propagated with the explicit kernel extension model in mapped feature space.  Experimental results demonstrate 
graph laplacian regularized regression method outperforms the state-of-the-art methods in both objective and subjective 
quality. Both local and nonlocal regularity constrains are exploited to improve the accuracy of noisy image recovery.    
It achieves much better quality with respect to PSNR than other methods and reduces computational complexity. It also 
capable of restore major edges and repetitive textures of the images. It is noticed that the proposed method can more 
accurately recover images. 
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