
 

    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 9, September 2015 

Copyright to IJAREEIE                      DOI:10.15662/IJAREEIE.2015.0409091                                                         7903 

Multifunction Residue Architectures for 
Cryptography 

 
C.Gayathri, R.sanjay Babu 

M.Tech Student (VLSI), Department of ECE, Shree institute of Technology, Tirupathi, India 

Assistant Professor, Department of ECE, Shree institute of Technology, Tirupathi, India 

 
ABSTRACT: The proposed procedure for fusing Residue Number System (RNS) and Polynomial Residue Number 
System (PRNS) in Montgomery particular increase in GF (p) or GF (2n) individually, and VLSI structural engineering 
of a double field deposit number-crunching Montgomery multiplier are introduced in this paper. An investigation of 
info/yield changes to/from deposit representation, alongside the proposed buildup Montgomery duplication calculation, 
uncovers normal increase gather information ways both between the converters and between the two buildup 
representations.  

An adaptable structural engineering is determined that backings all operations of Montgomery augmentation in GF 
(p) and GF(2n), info/yield changes, Mixed Radix Conversion (MRC) for whole numbers and polynomials, double field 
secluded exponentiation and reversal in the same equipment. Point by point correlations with best in class executions 
demonstrates the capability of buildup math abuse in double field particular increase. 

 
KEYWORDS:  Computations in finite fields, computer arithmetic, Montgomery multiplication, parallel arithmetic and 
logic structures. 
 

I. INTRODUCTION 
 

A noteworthy number of utilizations including cryptography, blunder amendment coding, PC variable based 
math, DSP, and so forth., depend on the productive acknowledgment of number-crunching over limited fields of the 
structure GF(2n) , where n ε Z and n > 1, or the structure GF(P) , where P a prime. Cryptographic applications frame an 
exceptional case, subsequent to, for security reasons, they oblige huge number operands [1]–[5]. Effective field 
augmentation with substantial operands is essential for accomplishing a delightful cryptosystem execution, since 
increase is the most time-and territory devouring operation.  

In this manner, there is a requirement for expanding the pace of cryptosystems utilizing measured number 
juggling with the slightest conceivable range punishment. An undeniable way to deal with accomplish this would be 
through parallelization of their operations. Lately, RNS and PRNS have appreciated replenished investigative 
enthusiasm because of their capacity to perform quick and parallel secluded number-crunching [6]–[13]. Utilizing 
RNS/PRNS, a given way serving a vast information extent is supplanted by parallel ways of littler element ranges, with 
no requirement for trading data between ways. Thus, the utilization of buildup frameworks can offer decreased many-
sided quality and force utilization of number-crunching units with vast word lengths [14].On the other hand, 
RNS/PRNS usage bear the additional expense of data converters to interpret numbers from a standard twofold 
configuration into deposits and yield converters to decipher from RNS/PRNS to parallel representations [14].  

Another approach for implanting buildup math in a double field Montgomery measured increase calculation 
for whole numbers in and for polynomials in is displayed in this paper. The numerical conditions that should be 
fulfilled for a substantial RNS/PRNS consolidation are inspected. The inferred construction modeling is exceptionally 
parallelizable and adaptable, as it backings double to-RNS/PRNS and RNS/PRNS-to-paired transformations, Mixed 
Radix Conversion (MRC) for whole numbers and polynomials, double field Montgomery duplication, and double field 
secluded exponentiation and reversal in the same equipment.   Whatever remains of the paper is sorted out as takes 
after. A brief diagram of related past work is offered in Section II, while the fundamental ideas of RNS and PRNS are 
condensed in Section III. In Section IV, fundamental limited field number juggling ideas are given and the operation of 
field augmentation is characterized. Taking after and Montgomery duplication calculations are introduced. In Section 
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VI, the proposed RNS/PRNS Montgomery increase calculation is broke down. The numerical conditions that permit a 
substantial joining of buildup number-crunching in the Montgomery calculation are additionally exhibited.  
 We briefly discuss related works in Section I, while Section II presents an overview of the Existing schemes. The 
proposed system along with possible hardware implementations and their analysis are described in Section III. In 
Section IV, the results .Finally, this paper is concluded in Section VI. 
 

II. EXISTING SYSTEM 
 

Essential advancement has been accounted for recently with respect to GF(2n) usage. The Massey-Omura 
calculation [15], the presentation of ideal ordinary bases [16] and their product and equipment usage [17], [18], the 
Montgomery calculation for duplication in GF(2n) [19], and in addition PRNS application in GF(2n) augmentation, are, 
among others, critical advances [9], [10], [12], [20], [21]. PRNS fuse in field duplication, as proposed in [9], is in view 
of a direct usage of the Chinese Remainder Theorem (CRT) for polynomials which obliges huge capacity assets and 
numerous pre-reckonings. The multipliers proposed in [10], [20], perform increase in PRNS, yet the outcome is 
changed over back to polynomial representation.  

This constraint makes them improper for cryptographic calculations which require continuous duplications. At 
long last, a calculation which utilizes trinomials for the modulus set and performs PRNS Montgomery duplication has 
been proposed [12]. Be that as it may, there is no reference to transformation techniques and the utilization of 
trinomials may issue restrictions in the PRNS information range. GF(p) executions have likewise withstood awesome 
investigation, with the Montgomery calculation being utilized as a part of the greater part of them. Montgomery 
increase plans fall into two classifications. The principal incorporates settled exactness information operand executions, 
in which the multiplicand and modulus are prepared in full word length, while the multiplier is taken care of a tiny bit 
at a time. A structural engineering arranged at bit-level conquers this issue [23]. At long last, techniques for installing 
RNS in Montgomery increase have additionally been proposed. 
 
A. Residue Arithmetic 

i. Residue Number System 
RNS consists of a set of, pair-wise relatively prime integers A=(m1,m2,……mL) (called the base) and the range 

of the RNS is computed as  A= . Any integer has a unique RNS representation ZA given by 
ZA=(Z1,Z2,….ZL)={(Z)m1,(Z)m2,……(Z)mL}, where(Z)mi denotes the operation Z mod mi . Assuming two integers a ,b 
in RNS format, i.e. aA=(a1,a2,…aL) and bA=(b1,b2,…bL) , then one can perform the operations  
in parallel by 

.1 
To reconstruct the integer from its residues, two methods may be employed [14]. The first is through the CRT 
according to 

 
 

Where  , is the inverse of Ai modulo mi , and  is an integer correction factor. 
The second method is through the MRC. The MRC of an Integer z with an RNS representation ZA=(Z1,Z2,….ZL)  is 
given by 
Z=U1+W2U2+……WLUL 

Where      and the Ui S are computed according to 
U1= z1 
U2= (Z2 - Z1)m2 
U3= (Z3 - Z1-W2U2)m3 
. 
UL= (ZL - Z1-W2U2- W3U3-……- WL-1UL-1)mL 
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ii. Polynomial Residue Number System 
 
Similar to RNS, a PRNS is defined through a set of L, pair-wise relatively prime polynomials 

. We denote by  the 
dynamic range of the PRNS. In PRNS, every polynomial  , with, has a unique 
PRNS representation:  
  

 
Such as  denoted as Z (mi) 
In the rest of the paper, the notation “(x) ” to denote polynomials shall be omitted, for simplicity. The notation Z will be 
used interchangeably to denote either an integer Z or a polynomial Z(x). 
 

III. PROPOSED SYSTEM 
 
A. Montgomery Multiplication 
 

i. GF(p) Arithmetic 
 

Field elements in GF(p)  are integers in [0,p] arithmetic is performed modulo. Montgomery’s algorithm for 
modular multiplication without division [43] is presented below, as Algorithm 1, in five steps, where R is the 
Montgomery radix, , and . R must be chosen so 
 

 
 
that steps 2 and 5 are efficiently computed. It is usually chosen to be a power of 2, when radix-2 representation is 
employed. Since Montgomery’s method was originally devised to avoid divisions, it is well-suited to RNS 
implementations, considering that RNS division are inefficient to perform. 
 

ii. GF (2n )Arithmetic 
 

Field elements in GF(2n )are polynomials represented as binary vectors of dimension n , relative to a given 
polynomial basis , where is a α root of an irreducible polynomial p of degree n over 
GF(2) . The field is then realized as and the arithmetic is that of polynomials of degree at most 
n-1, modulo p [1].  
The addition of two polynomials a and b in GF(2n ) is performed by adding the polynomials, with their coefficients 
added in GF(2 ) , i.e., modulo 2. This is equivalent to a bit-wise XOR operation on the vectors a  and b. The product of 
two elements a and  b in GF(2n )  is obtained by computing 
 

C = a.b mod p 
 
Where c is a polynomial of degree at most n-1 and  . A Montgomery multiplication 

algorithm suitable for polynomials in GF(2n )   has been proposed [19]. Instead of computing the product c= a.b mod p , 
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the algorithm computes C=  , with and R is a special 
fixed element in GF(2n ) . The selection of  is the most appropriate, since modular reduction and 
division by xn are simple shifts [3]. The algorithm is identical to Algorithm 1, except from the constant -p-1  in step 2, 
which is in GF(2n )   . 
B. New Methodology for Embedding Residue Arithmetic in Montgomery Multiplication 
 

i. Embedding RNS in GF(P) Montgomery Multiplication 
 
An MRC-based algorithm [44] that avoids the evaluation of the factor of (2) forms the basis of the proposed RNS-
based Montgomery multiplication algorithm. The derived algorithm is briefly presented here as Algorithm 2, and 
extended for the case of GF(2n ). Two RNS bases are introduced, namely  and 

 such that .The 5 steps of the 
Montgomery algorithm are translated to RNS computations in both bases, denoted from now on as 

 
Nevertheless, the computations in base cannot be continued for steps 3, 4, and 5 of Algorithm 1, since in step 

5 we would need to compute a quantity of the form , which does not exist since s are factors of . Thus, a base 
conversion (BC) step, from base to base , is embedded, to register . is then used to execute the old steps 3, 4, and 5 in 
base . The outcome toward the end of this calculation is an amount in RNS design that equivalents , since BC is sans 
slip. In Algorithm 2, inputs and yield are all not exactly, so they are good with one another. This permits the 
development of a secluded exponentiation calculation by redundancy of the RNS Montgomery increase. Base 
transformation in step 7 is used for the same reason. Calculation 3 portrays the proposed base change handle that 
changes over a whole number communicated in RNS base as to the RNS representation of another base.  

Rather than different RNS Montgomery augmentation calculations which additionally utilize MRC [39], [40], 
[44], the proposed one executes a rearranged variant of the MRC in (3) and (4) which, as will be demonstrated in next 
areas, not just lessens the aggregate many-sided quality of the calculation additionally offers better open doors for 
parallelization of operations.  
 

ii. Embedding PRNS in GF(2n)  Montgomery Multiplication 
 

A change of the Montgomery calculation for augmentation in GF(2n ) that incorporates PRNS is proposed next. 
The proposed calculation utilizes general polynomials of any degree, and is an expansion of a calculation [12], which 
utilizes trinomials for the PRNS modulus set. Moreover, the proposed calculation addresses the issue of changing over 
information to/from PRNS representation. As opposed to a comparable calculation in [45], which utilized CRT for 
polynomials for the BC calculation, the proposed construction modeling utilizes MRC. This takes into consideration 
double field RNS/PRNS execution, which is not bolstered in [45], and another system to actualize RNS-to-parallel 
transformation as will be demonstrated in Section V-D.  

The proposed calculation for PRNS Montgomery augmentation (PRMM) is exhibited underneath as 
Algorithm 4. The relating calculation for base change in is indistinguishable to Algorithm 3, in this manner it is 
overlooked for straightforwardness reasons. The main contrast is that number augmentations/subtractions and 
duplications are supplanted by polynomial ones. Once more, the level of data and yield polynomials are both not 
exactly, which permits the development of a particular exponentiation calculation by redundancy of the PRMM. Base 
change in step 7 is utilized for the same reason. 
 

iii. Proof of PRMM Algorithm’s Validity 
 
Theorem 1:  
 
If gcd{P,Q}=1 , gcd{Q,P}=1(2),deg(P)<n (3) , and deg(Q)>n (4) , then Algorithm 4 outputs CT , for which c=abQ-1 
mod P and deg{c}<n. 
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Proof:  
Since gcd{P,Q}=1  and gcd{Q,P}=1 , p is relatively prime to Q and Q is relatively prime to P . Thus, the 

quantities (P-1) qi and (Q-1) Pi exist  [1 ,L] and therefore P-1 A and Q-1 B exist. 
Accept that the polynomial is a different of , i.e., . At that point, , which implies that . This relates to step 2 of 

the PRMM calculation, which implies that stride 6 is without lapse since base change in step 3 is sans slip, along these 
lines PRMM holds. Besides, it must be demonstrated that the subsequent polynomial of Algorithm 4 is a polynomial of 
degree not as much as n .  

 
Since V is the maximum intermediate value of Algorithm 4, its degree must be less than the degree of the polynomial 
PQ. Under this assumption, we get 
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C. The Proposed Dual-Field Montgomery Multiplication Algorithm 
 

A careful examination of RMM and PRMM algorithms , reveals potential for unification into a common dual-
field residue arithmetic Montgomery multiplication (DRAMM) algorithm and a common dual-field base conversion 
(DBC) algorithm.  

The unified algorithms are depicted below as Algorithms 5 and 6, where  represents a dual-field 
addition/subtraction and  represents a dual-field multiplication. An important aspect is that all operations within the 
DRAMM and the DBC algorithms are now decomposed into simple multiply-accumulate (MAC) operations of word-
length  equal to the modulus word length . This allows for a fully-parallel hardware implementation, employing 
parallel MAC units, each dedicated to a modulus of the RNS/PRNS base. 
 

 

 
Finally, the conditions from Sections V-A and V-B, for a valid RNS/PRNS transformation of the Montgomery 
algorithm yield 
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which means that one should select RNS/PRNS ranges of word length 

 
For the bases An and B , individually. Calculations 5 and 6 alongside conditions (12) and (13) shape the complete 
system for a double field buildup number juggling Montgomery increase. As portrayed some time recently, the 
structure of the proposed calculation permits it to be reused in the connection of any exponentiation calculation. A 
conceivable usage is portrayed in Algorithm 7, needing altogether 2n+2 DRAMM increases [4], [46]. 
D. Conversions 

In the following discussion, base A=(P1,P2….PL) shall be used as an example to analyze the conversions 
to/from residue representations, without loss of generality. 

 
D. Hardware Implementation 

a. Dual-Field Addition/Subtraction 
A dual-field full-adder (DFA) cell (Fig. 1) is basically a full-adder (FA) cell, equipped with a field-select signal 

that controls the operation mode [33]. In the proposed implementation, 3-level, carry-look ahead adders 
(CLA) with 4-bit carry-lookahead generator groups (CLG) are employed [47]. An example of a 4-bit dual-field CLA 
adder is shown in Fig. 4.2. The GAP modules generate the signals ,  

 ,  , and AND gates along with a signal  control whether to 
eliminate carries or not. The carry-look ahead generator is an network AND- OR based on (19) [47]. 

 
 

Fig. 1 Dual-Field Full-Adder Cell (DFA). 
b. Dual-Field Modular/Normal Addition/ 

Subtraction 
With trivial modifications of algorithms for modular addition/subtraction in GF(p) [3], [4], a dual-field modular 

adder/subtracter (DMAS) shown in Fig. 3 can be mechanized using CLA adders. 
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 When fsel=0, the circuit is in GF(2n) mode and the output is derived directly from the top adder which performs a  
GF(2n) addition. When fsel=1 , the circuit may operate either as a normal  -bit adder/subtracter  

or as a modular adder/subtracter  .  
In the first case, the output is the concatenation of the outputs of the two adders. This is required during residue-to-
binary conversion, since (18) dictates that ,(2r) -bit quantities need to be added recursively via a normal adder. 
 
 

 
Fig...2 Dual-field CLA. 

 
c. Dual-Field Multiplication 
Dual-Field Multiplication A parallel tree multiplier, which is suitable for high-speed arithmetic, and requires little 

modification to support both fields, is considered in the proposed architecture. Regarding input operands, either 
integers or polynomials, partial product generation is common for both fields, i.e.,AND an operation among all operand 
bits. 

 Consequently, the addition tree that sums the partial products must support both formats. In GF (2n) mode, if DFA 
cells are used, all carries are eliminated and only XOR operations are performed among partial products. In GF(p) 
mode, the multiplier acts as a conventional tree multiplier. A 4x4-bit example of the proposed dual-field multiplier 
(DM) with output in carry-save format is depicted in Fig. 3 
 
 

 
Fig. 3 Dual-field multiplier (DM). 

 
E. MAC Unit 

The circuit organization of the proposed MAC unit is shown in Fig.4 . Its operation is analyzed below in three 
steps, corresponding to the three phases of the calculations it handles, i.e., binary-to-residue conversion, RNS/PRNS 
Montgomery multiplication, and residue-to-binary conversion.  

 
i. Binary-to-Residue Conversion 

 
 Initially, -bit words of the input operands, as implied by (15), are cascaded to each MAC unit and stored in RAM1 at 
the top of Fig. 4.4. These words serve as the first input to the multiplier, along with the quantities which are stored in a 
ROM. Their multiplication produces the inner products of (15) or (17) which are added recursively in the DMAS unit. 
The result is stored via the bus in RAM1. The process is repeated for the second operand and the result is stored in 
RAM2, so that when the conversion is finished, each MAC unit holds the residue digits of the two operands in the two 
RAMs. The conversion requires steps to be executed. 
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Fig. 4 The proposed MAC unit. 
ii. Montgomery Multiplication 

 
 The first step of the proposed DRAMM is a modular multiplication of the residue digits of the operands. Since 

these digits are immediately available by the two RAMs, a modular multiplication is executed and the result in is stored 
in RAM1 for base and RAM2 for base. Step 2 of DRAMM is a multiplication of the previous result with a constant 
provided by the ROM. The results correspond to inputs of the DBC algorithm and are stored again in RAM1. All MAC 
units are updated through the bus with the corresponding RNS digits of all other MACs and a DBC process is initiated. 

. Each MAC unit has been assigned to a different color, thus in the overlapped case the color codes signify when a 
MAC unit performs operations for other units. In the example of Fig..5, MAC(1) handles MAC(4) and MAC(2) 
handles MAC(3). In each cycle, modular additions and multiplications are performed in parallel in each MAC.  
 

iii. Residue-to-Binary Conversion 
 

 Residue-to-binary conversion is essentially repetitions of the DBC algorithm, except for steps 9–14, which are no 
longer modulo operations. To illustrate the conversion process, assume the generation of the inner products in row 1 of 
(18). Each product is calculated in parallel in each MAC unit and a “carry-propagation” from MAC(1) to is MAC(L) 
performed to add all inner products. When summation finishes the first digit z (o) f the result is produced in  MAC(L) . 
In parallel with this “carry-propagation”, the inner products of line 2 are calculated. As soon as a MAC unit completes 
an addition of carry-propagated inner products for line 1, a new addition for line 2 is performed. The process continues 
for all lines of (18) and the result is available after steps. The Complete DRAM architecture is depicted in Fig. 8. 
 

 
 

Fig.5 The proposed DRAMM architecture. 
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IV. SIMULATION RESULTS 
 

 
 

 
 

V. CONCLUSION 
 
The mathematical framework and a flexible, dual-field, residue arithmetic architecture for Montgomery multiplication 
in GF(p) and GF(2n) is developed and the necessary conditions for the system parameters (number of moduli channels, 
modulus word length) are derived. The proposed DRAMM architecture supports all operations of Montgomery 
multiplication in GF(p) and GF(2n)  , residue-to-binary and binary-to-residue conversions, MRC for integers and 
polynomials, dual-field modular exponentiation and inversion, in the same hardware. Generic complexity and real 
performance comparisons with state-of-the-art works prove the potential of residue arithmetic exploitation in 
Montgomery multiplication. 
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