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ABSTRACT: The purpose of this study is to investigate the sensitivity of contrast-based textural measurements and 
morphological characteristics that derive from high-resolution satellite imagery (three-band SPOT-5) when diverse 
image enhancements techniques are piloted. The general framework of the application is the built-up/nonbuilt-up 
detection. In the existence of a low-resolution reference layer, we apply supervised learning that indirectly reduces the 
uncertainty and improves the quality of the reference layer. Based on the new class label assignments, the image 
histogram is adjusted suitably for the computation of contrast-based textural/morphological features. A case study is 
presented where we test a mixture of image enhancement operations like linear and decorrelation stretching and assess 
the performance through ROC analysis against available building footprints. Experimental results demonstrate that 
spectral band combination is the key factor that conditions the contrast of grayscale images. Contrast adjustment 
(before or after the band combination and merging) supports considerably the extraction of informative features from a 
low-contrast image; in case of a well-contrasted image, the improvement is marginal. 
 
KEYWORDS: Built-up detection, contrast adjustment, feature extraction, high-resolution image enhancement, low-
resolution reference data, morphological, supervised learning, support vector machines (SVMs), textural. 
 

I. INTRODUCTION 
 

In  the  context  of  contrast-based  feature  extraction  from high-resolution  satellite  imagery,  image  enhancement 
techniques  are  utilized  to  modify  the  band  intensities  and decrease the noise that covers significant information. 
Typical image enhancement techniques are as follows: linear contrast adjustment, decorrelation stretching, histogram 
equalization, and adaptive filtering [1]–[4] classified as pixel/spatial-based approaches.  Fourier  decomposition,  
wavelet  transform,  and discrete  cosine  transform  [2],  [5],  [6]  are  alternative approaches that belong to the 
frequency-domain techniques. The  majority  of  the  aforementioned  techniques  aim  at improving  the  visual  
inspection  of  the  image  and  usually involves manual parameter tuning. The requirements of our application,  as  
delineated  further  down,  impose  a  fully automated   approach   combined   with   a   low-complexity algorithm for 
massive image processing. The framework of the   specific   application   is   defined   by   the   following 
 
considerations and assumptions. 
 

1) Within the operational project of generating a wall-towall layer of human settlements in Europe, we processed in 
a massive and automated way more than 2000 very high-resolution (VHR) satellite images provided by the 
Copernicus European Earth Observation Program by means of the Copernicus Core_003 SPOT5 satellite imagery 
dataset [7], [8]. These data consist of SPOT-5 images with continental coverage of Europe and the following 
basic technical characteristics: a) ETRS89 Lambert equal area (LAEA) projection; b) spatial resolution at 2.5 m; 
and c) three spectral bands: green (bG), red (bR), and near infrared ( bNI ). 

 
2) The images were not calibrated to account for seasonal and atmospheric factors. As such and without further 

amplification, they have been treated directly by the processing modules. 
 

3) The resulting classification was based on textural and morphological features. Analytical description of the 
features can be found in [10]. 
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The ground for this study shaped from the need of finding a consistent and automatic way for the standardization of 
the uncalibrated images. Our main goal was to test the sensitivity of contrast-based textural measurements and 
morphological characteristics when computed over different gray representations. Thereafter, a second objective was 
the investigation of alternative ways, statistical in their nature, which might provide a suitable means for conducting 
standardized feature extraction. 
 

Accordingly, we present herein some experimental results and we put forward a statistical learning approach for the 
stabilization of the image contrast sensitivity to different preprocessing conditions. In particular, a simple algorithmic 
schema is proposed as described briefly below. 
 

1) A binary classifier [support vector machine (SVM)] is trained in the light of a low-resolution reference layer. 
 

2) The optimal hyperplane that separates the two classes: 1) built-up (BU); and 2) nonbuilt-up (NBU) is estimated 
through a nonlinear mapping. 

 
3) The class labels of the reference layer are modified via ad hoc treatment of the respective training samples that 

delimit the hyperplane into a high-dimensional feature space. 
 

4) A histogram adjustment driven by the reference layer is applied per class. In practice, this turns out to instruct and 
facilitate mostly the extraction of the textural measurements. 

 
For the needs of supervised learning, we exploited the existence of the soil sealing layer (SSL). This is a raster 

dataset of European areas providing information of the degree of soil sealing in aggregated spatial resolution of 100 m 
× 100 m [11]. Main traits of the specific product are its completeness and its relatively high overall accuracy, observed 
largely in dense BU areas [12]. 
 

The proposed approach constitutes a data preparation phase just before the feature extraction. It attempts to improve 
the quality of the textural/morphological characteristics while retaining the computational burden in low levels. 
Generally speaking, it moves inside the concept of synergy between machine learning and image processing; one 
contiguous application has been presented recently in [13]. 
 

This paper is organized as follows. Section II describes the algorithmic schema, the assumptions, and the 
parameterization. Section III explains the experimental setup; results are demonstrated for the city of Torino, Italy, 
while the performance is assessed through ROC analysis with the aid of a footprint layer at 2.5-m spatial resolution. 
Section IV discusses the findings of the experimental study and Section V summarizes and provides suggestions for 
future work. 
 

II. SCHEMA DEFINITION 
 
A. IMAGE FEATURES 
 

The textural measurements we are interested in are estimated through the Haralick’s measure for the intensity 
contrast between a pixel and its neighbors [14]. The factors (quantization, length, and orientation) and the operators like 
fuzzy composition are defined in [15]; the produced textural layer is known as PANTEX. 
 

Regarding the morphological features, we included in our tests a recently introduced index named morphological 
building index (MBI) [16], [17]. It is a quite accurate indicator that considers the characteristics of buildings 
(brightness, size, contrast, directionality, and shape) by integrating multiscale and multidirectional morphological 
operators. Note that both PANTEX and MBI are automatic indices and their operation is not based on statistical 
learning and training samples. 
 

Trying to reduce the high dimensionality of the cooccurrence matrix over which the textural measurements are 
computed, we convert the multiband images to 8-bit grayscale. Besides, the graylevel images are suitable to work with 
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morphological operators. The challenge now is to adjust selectively the image intensities, so that the difference between 
the pixel values that refer to BU and NBU to be as high as possible; in this manner, the BU representation becomes 
distinguishable. The contrast adjustment can be done either during the image conversion to grayscale by means of a 
suitable spectral band combination or by modifying the histogram of the image intensities. 
 
B. SYLLOGISM 
 

The typical reasoning of supervised learning suggests the use of a BU/NBU template to drive the contrast tuning. 
Given that the specific application has to do with satellite images that cover European regions, we employ the SSL as 
BU/NBU reference. Since the meaning of the SSL range of values1does not correspond confidently to an absolute 
BU/NBU template, some experimentation (several thresholds were tested over 60 scenes and their effectiveness was 
validated through visual inspection) guided us to apply two thresholds SSL ≥ 50 ∧ SSL ≤ 100 to make the layer binary, 
with ones indicating all the mediumto-high probability BU areas. Nevertheless, the disparity in terms of spatial 
resolution (a ratio of 40) between SSL and the SPOT-5 images used for processing makes their direct association 
problematic. Fig. 2(a) and (b) clearly shows the distance between SSL and the reality represented by the building 
footprints (BFs). The coarse resolution of SSL inserts uncertainty and hinders the distinction of BU pixels in the high-
resolution imagery. 
 

Apart from directly using the upsampled SSL as reference layer, we elaborated the process of downscaling the layer 
in a statistical fashion. The simple idea we introduce in this paper is to seek for the hyperplane that separates tuples of 
spectral values, derived from the input images, into two groups ( BU/NBU ) according to the reference layer in its 
original (low) resolution. For this purpose, we employ a powerful classification technique like the SVM which draws 
the optimal hyperplane that linearly discriminates the two classes BU/NBU into a high-dimensional feature space H 
without using an explicit mapping. This can be achieved by means of the kernel trick [18], [19]. Support vectors (SVs) 
are the closest tuples of measurements to the hyperplane with respect to H; consequently, they contain the critical 
information for the class separation. In our application, having as fact that the reference layer does not constitute an 
accurate template mainly due to its low spatial resolution, the meaning of SVs matches with the concept of uncertainty 
that is inherent along the class boundaries. Thereafter, three options are deemed for the SVs usage. 
 

1) To totally remove their respective class labels from the reference layer: this decision targets at the increase in 
both intra-class similarity and inter-class dissimilarity; however, it has high risk due to the loss of potentially 
useful information for the discrimination of the classes. 

 
 
the SVs and b is the bias. 

Then, we generate a new reference layer by 
following one of the three options described in 
Section II-B. 

Fig. 1. Two experimental configurations. 
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1) SSL(2)k = 
 

. 
 
2) SSL 
 

. 
 
3) Build a new SVM by using X = [xj] ∀j ∈/ V as training set and define the respective discrimination function. 

Subsequently, utilize this function to classify the pixels of the original image Imn×3. The resulting binary image 
 

(4) 
 

sentsSSLm the×n becomes downscaled the version new reference.of SSL Actually,(1). Note itthatrepre-the 
 

number of SVs derived from the second SVM is 30 – 40 times less than the number of the first SVs. This reduces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. CONTRAST ADJUSTMENT 
 

The last processing stage refers to the adjustment of the image histogram. At this point, we explore two scenarios. 
(C1) The original image is converted to grayscale, and then, the contrast adjustment takes place. (C2) The histogram 
adjustment is done separately for each band of the original image (multichannel histogram stretching), and then, the 
bands are merged to form a grayscale image. Fig. 1 displays the two experimental scenarios using flow charts. In both 
cases, the operation occurs in the spatial domain of size m × n. Accordingly,  become 
 

through nearest neighbor ( NN 
) 

 
interpolation. All the reference images are displayed in Fig. 2. 
 

Let Bm×n denote the input image and SSLm×nrepresent one of the four available reference images. Herein, we 
describe and 
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Fig. 2. Reference layers at 2.5-m spatial resolution: (a) City of Torino: building footprints covered an area of 6.5 × 8.24 
km; (b) SSL(1); (c) SSL(2); 
(d) SSL (3); and (e) SSL(4). The images in (b), (c), and (d) have been resized via nearest neighbor interpolation to match 
the resolution of the input image. In put in the test eight different computations for the stretching of image values 
 
 
 
 
(M1.1) Where with p¯l 
 

denoting the mean of pl and spldenoting the respective standard deviation; r = 2 for both classes. 
 
(c), the darker pixels have been omitted completely. 
 
 
(M1.2) The same as in (M1.1) but 
 

. 
 
(M1.3) The same as in (M1.1) but 
 

−. 
 
(M1.4) The same as in (M1.1) but for the class 1, i.e., only the values that refer to BU are modified, whereas the other 

values remain intact. 
 
(M2.1) a = max(min(pl),r1) and b = min(max(pl),r2), r1 = 0, r2 = 255 
 
(M2.2) The same as in (M2.1) but r1 = 0.1 ∗ 255 and r2 = 
 

0.9 ∗ 255. 
 
(M2.3) The same as in (M2.1) but only for the class 1. (M2.4) The same as in (M2.2) but only for the class 1. 
 

III. EXPERIMENTAL SETUP 
 

The central question in this paper is whether a low-resolution reference layer can improve the contrast adjustment of 
an image. A further significant issue in the case of a positive answer is to find the most effective processing stage: 
during image conversion to grayscale via a good band combination or through operations over the image intensities? 
 

In order to test the band combinations, we established seven scenarios. (O1) RGmax = max(bR,bG) refers to the 
maximum decomposition of a multichannel image and results in a brighter grayscale image. It is also related to the 
Value component of the HSV color model. (O2) RGlinear = 0.3559bR + 0.6441bG constitutes a modification of luma 
that is defined as the weighted average of gamma-corrected RGB; it is a standard band combination fitted on how 
human eye perceives 
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color. The weight for the blue band has been shared equally to the other two weights. (O3) RGNIlinear = 0.2989bR + 
0.5870bG + 0.1140bNI: the luma linear combination with the 
blue  band  to  have  been  substituted  by  the  infrared.  (O4) 
 
NIRGlinear = 0.2989bNI + 0.5870bR + 0.1140bG: the same weights as in (O3) but following a different band order; the 
 
next linear combinations (O5) RGlinearD, (O6) RGNIlinearD, and (O7) NIRGlinearD are defined in the same way as 
(O2), (O3), and (O4), respectively, with the difference that the bands are the decorrelated versions of the original ones. 
The specific application of decorrelation stretch keeps the same image statistics in both input and output images. At the 
end, we tested 7 input images × 2 histogram adjustment scenarios × (4 reference layers + 1 test without reference) × 8 
ways of contrast stretching = 560 cases. 
 

Regarding the SVM parameter settings, the Gaussian radial basis function (RBF) was selected as kernel 
 
 
 

with σ = 0.6 width/scaling factor; the control parameter C was set to 1 for all the vectors. The hyper-parameters were 
defined and optimized through cross-validation, using as test cases areas where BFs are available. As regards the kernel 
selection, we also experimented with the linear and the quadratic kernel, mainly due to their relatively low 
computational cost; however, the Gaussian RBF kernel turned out to define better the separation hyperplane and to 
capture the nonlinearity in the original feature space. Concerning the extraction of the textural measurements, a squared 
window of size 25 m was considered suitable for the computation of cooccurrence matrices at 2.5-m resolution. For the 
MBI, we selected four directions (45◦ , 90◦ , 135◦ , and 180◦ ) and three scales (5, 17, and 29). 
 

The case study we demonstrate here has been elaborated over the city of Torino, Italy, where BFs are available. The 
assessment of the results was done with the aid of ROC analysis by computing the area under curve (AUC) and the 
equal error rate (EER) [10] between PANTEX/MBI and BFs; Tables I–IV display those results. Table V shows the 
degree of agreement between BFs and each of the reference layers at 2.5 m. Two performance measures that are 
deemed more appropriate in case of imbalanced datasets are reported in this table: balanced accuracy (average of 
sensitivity and specificity) and F-score (harmonic mean of precision and recall/sensitivity). Fig. 3 shows some 
indicative snapshots of the three-band input images, their grayscale composition, and their respective binary version of 
PANTEX after applying the 
EER threshold. The pictures in Fig. 4 demonstrate the matching degree between MBI and BFs in two built-up cases: 
dense and sparse. In all the aforementioned cases, we do not make use of the NDVI, which surely improves the BU 
detection. 
 

Finally, Fig. 5 shows how the histogram of the original threeband image is amended through different types of 
grayscale conversion and contrast stretching. Picking out the maximum value of an RGB triplet is the most common 
approach for 
 
preparing the input image to the PANTEX and MBI algorithms; when applied to the specific SPOT-5 images, the 
RGmax conversion produces a grayscale histogram that is very similar to the one given by the green band itself [Fig. 
5(a) and (b)]. Moreover, the majority of the image values are located in a specific brightness range, resulting in a 
moderate contrast. Fig. 5(c) shows how decorrelation stretching normalizes and distributes a 
 
little better the values over the dynamic range; however, it gathers the majority of the values around the mean value. 
Fig. 5( d ) demonstrates a reference-based contrast stretching that seems to spread the image values throughout the 
range quite evenly. Based again on the reference, it impels the distinction of the gray levels by introducing artificially a 
bimodal behavior over the image data. 
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Fig. 5. Image histogram and contrast stretching: (a) three-band histogram of the original image; (b) RGmax; (c) 
NIRGlinearD; (d) RGmax → 

 
detected corners. The probability of a pixel to represent a corner increases proportionally to the distinction level 
between this pixel and its neighborhood. That is, a contrast adjustment that sharpens enough the grayscale image 
has the potentiality to boost the derivation of prominent textural characteristics. The morphological features 
instead, and especially those that derive from multiscale analysis, turn out to be more stable against the contrast 

 
(M2.1)| SSL(4)| (C1). 
 

variations. The successive use of structural elements of increasing size and the subsequent process of 
differentiating between objects detected at dissimilar scales somehow manage to compensate the influence of a 
moderate contrast. Besides, the morphological characterization has to do, not only with brightness and contrast 
but also takes into consideration the size and the shape of the objects to be detected. 

 
2) The feature extraction as described herein requires a grayscale image as input. The typical approach for the 

calculation of both PANTEX and MBI is to provide as input an image consisting of the maximum values of the 
RGB triplet. However, the experimental results show that there are other band combinations (like the luma, with 
or without decorrelation stretching) that, in many cases, lead to a better contrast. Selecting the right band 
combination seems 

to be a key factor especially for the extraction of good textural measurements. 
 
3) The results show that in some cases (M1.4, M2.4, M1.2), the reference-based contrast adjustment can boost the 

performance. As we explained previously, PANTEX is strongly dependent from the contrast 
 

level; the use of a detailed reference layer (like SSL(4)), which makes feasible the contrast correction in smaller 
image areas, appears to fit better with the second-order statistics and the single-scale processing that the PANTEX 
algorithm utilizes. On the contrary, MBI appears to work better with a moderate contrast level and starts to show 
instability at higher levels of image sharpness. Good contrast stretching approaches for MBI can consider the cases 
(M1.2) and (M1.4). 

 
4) In the two scenarios (C1) and (C2), the stage at which the histogram adjustment takes place is examined. No 

significant difference or notable effect in terms of performance is observed from the results [exceptions are the 
 
PANTEX cases (M1.4) and (M2.4) using learning against 

 ].  Hence,  we  conclude  that  the  histogram 
 

adjustment before or after the image conversion to grayscale leads, in average, to similar outcome. 
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V. CONCLUSION 
 

Image enhancement and contrast adjustment play a substantial role for the extraction of trustworthy textural and 
morphological characteristics. In order to investigate and measure the sensitivity of those features against variations in 
contrast, a series of tests were carried out; different scenarios were examined regarding mainly the image bands’ 
combination and the image histogram adjustment guided by low-resolution reference data. From the reported results, a 
number of approaches can be distinguished for improving the image contrast and for instructing effectively the feature 
extraction. 
 

Finally, a meaningful result of this work is the introduction of a simple and relatively fast approach that can 
“correct” the lowresolution reference and transfer it smoothly in finer resolutions (the SSL(4)case). 
 

Future work includes tests with adaptive histogram adjustment, usage of different reference layers, and application of 
radiometric feature selection and transformation techniques. The presented work is in experimental phase and still 
remains to be scaled up and adapt to the conditions of the operational mode. 
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