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ABSTRACT: Target Tracking has become a challenging task in many fields of science. The tracking problem involves 
estimating moving target’s states using noisy measurements obtained at a single observation point. Particle filter offers 
a general solution for such problems. This paper presents the application of particle filtering technique to a target 
tracking example, in which a radar sends a signal towards a maneuvering target (aircraft) and estimates the state 
(position and velocity) of the target using the observations (Range and Bearing angle). This paper also deals with the 
analysis of the effect of number of particles in the performance of Particle Filter algorithm. Simulation is done in the 
MATLAB. From the analysis, it can be concluded that increase in the number of particles will give more optimal 
solution for the tracking problem. 
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I.INTRODUCTION 

Nonlinear filtering problems arise in many fields including statistical signal processing[10], economics, statistics, and 
engineering such as communications, radar tracking[18], sonar ranging, and satellite navigation[17]. The problem 
consists of estimating a possibly dynamic state of a nonlinear stochastic system, based on a set of noisy measurements. 
Many of these problems can be written in the form of Dynamic State Space (DSS) models. The model can be either 
linear or nonlinear. Sequential Bayesian estimation techniques, such as Kalman Filtering[19], Extended Kalman 
Filtering[21], and Particle Filtering[20], are widely used to estimate parameters of dynamic state-space models. Kalman 
filters (KFs) can provide optimal parameter estimates for linear systems in additive Gaussian noise [1]. When the 
systems are nonlinear and non-Gaussian, Particle Filters (PFs) yield more accurate estimation results than extended 
KFs. Particle filtering is a powerful, emerging methodology with a wide range of applications in science and 
engineering. Researchers from a variety of fields ranging from signal processing to statistics and econometrics use 
particle filters because of its potential for coping with difficult nonlinear and/or non-Gaussian noise problems. They are 
based on the idea of approximating the probability density functions (PDFs) of the state of a dynamic model by random 
samples (particles) with associated weights and propagating them across iterations based on a probabilistic model of the 
state update and the measurements. 
 
This paper outlines the analysis of the effect of number of particles in the performance of Particle Filter algorithm by 
considering a typical target tracking example in which the position and velocity of an aircraft is estimated using a 2D 
constant acceleration model. In this case, range and bearing angle are the noisy measurements applied to the filter. 

II.PARTICLE FILTER ALGORITHM 

The dynamic estimation problem[3] assumes two fundamental mathematical models:the state dynamics and the 
measurement equation. The dynamics model describes how the state vector evolves with time and isassumed to be of 
the form 

௞ݔ = ௞݂ିଵ(ݔ௞ିଵ,ݑ௞) , for݇ > 0(2a) 
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Here ݔ௞ is the state vector to be estimated, ݇ denotes the time step and ௞݂ିଵ is aknown possibly non-linear function. ݑ௞ 
is a white noise sequence, usually referredto as the process, system or driving noise. The pdf ofݑ௞ is also assumed 
known. Note that (2a) denotes a first order Markov process, and an equivalent probabilistic description of the state 
evolution is (ݔ௞|ݔ௞ିଵ) , which is sometimes called the transition density. For the special case when ݂is linear and ݑ is 
Gaussian, the transition density ݌(ݔ௞|ݔ௞ିଵ)  is also Gaussian. 

The measurement model relates the received measurements to the state vector: 
௞ݖ  = ℎ௞(ݔ௞,ݓ௞) , for ݇ > 0                                                                (2b) 

where  ݖ௞  is the vector of received measurements at time step ݇, ℎ௞ is the knownmeasurement function and ݓ௞is a 
white noise sequence (the measurement noise or error). Again, the pdf of ݓ௞ is assumed known and ݑ௞ and ݓ௞ are 
mutuallyindependent. Thus, an equivalent probabilistic model for (2b) is the conditional pdf݌(ݖ௞|ݔ௞). For the special 
case when ℎ௞ is linear and ݓ௞ is Gaussian, ݌(ݖ௞|ݔ௞) is alsoGaussian. 
 
The final piece of information to complete the specification of the estimationproblem is the initial conditions. This is 
the prior pdf  ݌(ݔ଴) of the state vector at time ݇ = 0, before any measurements have been received. So, in summary, 
theprobabilistic description of the problem is: ݌(ݔ଴), ݌(ݔ௞|ݔ௞ିଵ) and ݌(ݖ௞|ݔ௞). 
As already indicated, in the Bayesian approach one attempts to construct the posterior pdf of the state vector ݔ௞ given 
all the available information. This posteriorpdf at time step ݇ is written ݌(ݔ௞|ܼ௞), where ܼ௞ denotes the set of all 
measurementsreceived up to and including  ݖ௞: ܼ௞ = { ݖ௜, ݅ = 1,…., ݇}. The formal Bayesian recursive filter consists of 
a prediction and an update operation. The prediction operationpropagates the posterior pdf of the state vector from time 
step ݇ − 1 forwards totime step ݇. Suppose that ݌(ݔ௞ିଵ|ܼ௞ିଵ) is available, then ݌(ݔ௞|ܼ௞ିଵ), the prior pdfof the state 
vector at time step ݇> 0 may be obtained via the dynamics model (thetransition density): 

(௞|ܼ௞ିଵݔ)݌             = ݌∫  ௞ିଵ                                                  (2c)ݔ݀ (௞ିଵ|ܼ௞ିଵݔ)݌(௞ିଵݔ|௞ݔ)
This is called as the Chapman-Kolmogorov equation. 
The prior probability density function may be updated to incorporate the new measurements  ݖ௞  to givethe required 
posterior pdf at time step ݇> 0: 

(௞|ܼ௞ݔ)݌ =  (2d)                                                     (௞|ܼ௞ିଵݖ)݌/((௞|ܼ௞ିଵݔ)݌(௞ݔ|௞ݖ)݌)
This is Bayes rule, where the normalising denominator is given by ݌(ݖ௞|ܼ௞ିଵ) =∫ (௞ݔ|௞ݖ)݌  ௞. Theݔ݀ (௞|ܼ௞ିଵݔ)݌
measurement model regarded as a function of ݔ௞with  ݖ௞  given is the measurement likelihood. The relations (2c) and 
(2d) define theformal Bayesian recursive filter with initial condition given by the specified prior pdf݌(ݔ଴|ܼ଴) = 
 If (2c) is substitutedinto (2d), the prediction and update may be written .(where ܼ଴ is interpreted as the empty set)(଴ݔ)݌
concisely as a single expression. 
The relations (2c) and (2d) define a very general but formal (or conceptual) solutionto the recursive estimation 
problem. Only in some special cases can an exact, closed formalgorithm be obtained from this general result. By far the 
most important of these special cases is the linear-Gaussian (L-G) model: if ݌(ݔ଴), ݌(ݔ௞|ݔ௞ିଵ) and ݌(ݖ௞|ݔ௞) are all 
Gaussian, thenthe posterior density remains Gaussian [13] and (2c) and (2d) reduce to the standard Kalman filter 
(which recursively specifies the mean and covariance of the posteriorGaussian). Furthermore, for non-linear/non-
Gaussian problems, the first recourseis usually to attempt to force the problem into an L-G framework by 
linearisation.This leads to the extended Kalman filter (EKF) and its many variants. For mildlynon-linear problems, this 
is often a successful method and many real systems operateentirely satisfactorily using Extended Kalman Filters. 
However, with increasingly severe departuresfrom the L-G situation, this type of approximation becomes stressed to 
the point of filter divergence. For such grossly non-linear problems, the particle filter may be an attractive option. 
The most fundamental particle filter may be viewed as a direct mechanisation of the formal Bayesian filter. 
Suppose that a set of ܯ random samples from the posterior pdf ݌(ݔ௞ିଵ|ܼ௞ିଵ)(݇> 0) is available. We denote these 
particles by ൛ݔ௞ିଵ௜∗ ൟ

௜ୀଵ
ெ

. 
The prediction phase of the basic algorithm consists of passing each of thesesamples from time step ݇ − 1 through the 
system model (2a) to generate a set of priorsamples at time step ݇. These prior samples are written ൛ݔ௞௜ ൟ௜ୀଵ

ெ
, where 

௞௜ݔ = ௞݂ିଵ൫ݔ௞ିଵ௜∗ ௞௜ݑ, ൯                                                                          (2e) 
and ݑ௞௜  is a (independent) sample drawn from the pdf of the system noise. Thisstraightforward and intuitively 
reasonable procedure produces a set of samples orparticles from the prior pdf ݌(ݔ௞|ܼ௞ିଵ). 
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To update the prior samples in the light of measurement ݖ௞, a weight ݓ෥௞௜  iscalculated for each particle. This calculated 
weight is the measurement likelihood evaluatedat the value of the prior sample: ݓ෥௞௜ ௞௜ݔ௞หݖ൫݌ =  ൯. The weights are then 
normalizedso they sum to unity: ݓ௞௜ = ෥௞௜ݓ /∑ ෥௞ݓ

௝ெ
௝ୀଵ and the prior particles are resampled(with replacement) according 

to these normalized weights to produce a new set ofparticles:൛ݔ௞௜∗ൟ௜ୀଵ
ெ

 such that Pr൛ݔ௞௜∗ = ௞ݔ
௝ൟ=ݓ௞

௝  for all ݅, ݆.In other 
words, a member of the set of prior samples is chosen with a probabilityequal to its normalised weight, and is repeated 
௞௜∗ൟ௜ୀଵݔtimes to build upthe new set ൛ ܯ

ெ
.  

We contend that the new sets of particles are samples of therequired pdf ݌(ݔ௞|ܼ௞) and so a cycle of the algorithm is 
complete. 
This simple algorithm is often known as the Sampling Importance Resampling (SIR) filter and it was introduced in 
1992 [1] where it called the bootstrap filter. Itwas independently proposed by a number of other research groups 
including Kitagawa [14] as a Monte Carlo filter and Isard and Blake [15] as the CONDENSATIONAlgorithm. 
 

III.TARGET TRACKING EXAMPLE 

The performance of particle filter is analysed by considering a typical maneuvering target tracking example in which 
the position and velocity of an aircraft is estimated using a 2D constant acceleration model. In this case the range and 
bearing angle are the measurements which are applied to the filter. From the dynamic state space model, it can be seen 
that the model has linear state equation and nonlinear measurement equation.  

The dynamic state space model of the above tracking example is given below 

௞ݔ  =

⎝

⎜
⎜
⎜
⎛

1 0 ܶ
0 1 0
0 0 1

0 ܶଶ
2ൗ 0

ܶ 0 ܶଶ
2ൗ

0 ܶ 0
0 0 0
0 0 0
0 0 0

1 0 ܶ
0 1 0
0 0 0 ⎠

⎟
⎟
⎟
⎞
 ௞(3a)ݑ+௞ିଵݔ

 

௞ݕ = ቀ௥ఝቁ = ൬ √(௣ೣమା௣೤మ

௔௥௖௧௔௡൫௣೤ห௣ೣ൯
൰ + ݁௞(3b) 

where the state vector ݔ௞ = ௫݌] ௬݌  ௫ݒ    ௬ ܽ௫ܽ௬]்i.e. position, velocity and acceleration. We have discarded the heightݒ 
component, since a level flight is considered. The sample time is taken as constant and denoted by T=1sec.The 
measurement noise ݁௞ is Gaussian with zero mean and covariances R=Diag(50,2). The process noisesݑ௞ are assumed 
Gaussian with zero mean and covariances Q=Diag (50, 50,0.01,0.01,0.01,0.01). 

Algorithm: Particle Filter for the above aircraft tracking model (Model with nonlinear measurement equation). 
1) Particle Generation 

For ݅ = 1,2 … .  ܯ,
(a) Generate M random numbers ݑ௞

(௜)~ܰ(0,  (௨ଶߪ
              (b) Particle Computation ݔ௞

(௜) = ௞ିଵݔܨ
(௜) + ௞ݑ

(௜) 
2) Weight Computation 

෥௞ଵݓ
(௜) = ݎ)ܰ − ට݌௫

(௜)మ + ௬݌
(௜)మ  ௥ଶ)(3c)ߪ,

෥௞ଶݓ
(௜) = ܰ(߮ − atanቆ

௣೤
(೔)

௣ೣ
(೔)ቇ ,  ఝଶ)                                                                                                                        (3d)ߪ

෥௞ݓ
(௜)= (ݓ෥௞ଵ

(௜) + ෥௞ଶݓ
(௜))/2                                                                                                                                       (3e) 

 
3) Weight Normalization 
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௞ݓ
(௜) =

௪෥ೖ
(೔)

∑ ௪෥ೖ
(ೕ)ಾ

ೕసభ
, ݆ = 1,2 … .  (3f)                                                                                                                          ܯ,

4) Output 
௞ݔ = ∑ ௞ݓ

(௜)ݔ௞
(௜)ெ

௜ୀଵ                                                                                                                                            (3g) 
 

5) Resampling 

ቄݔ෤௞
(௜) , ଵ

ெ
ቅ
௜ୀଵ

ெ
≈  ቄݔ௞

(௜),ݓ௞
(௜)ቅ

௜ୀଵ

ெ
                                                                                                                           (3h) 

6) k=k+1, go to step 1(b). 
IV.SIMULATION RESULTS 

In this section particle filter will be analyzed in an extensive Monte Carlo (MC) simulations using the model described 
in (3a) and (3b). The simulation for the tracking of the aircraft using particle filter is done using MATLAB.The main 
purpose of this simulation is to compare the performance of standard particle filter under different scenarios. A target 
trajectory and associated measurements (range and bearing angle) have been generated according to equations (3a) and 
(3b) for 500 time instants. The parameter values are given in table below. 

Table I:Parameter Values 

Parameter Value 

Number of Monte Carlo Simulations 100 

Initial Position [݌௫  ௬](m) [0 0]݌ 

Constant Acceleration(m/s2) 0.01 

Initial state Covariance Q Diag (50, 50, 0.01, 0.01, 0.01, 0.01) 

Measurement noise Covariance R Diag (50, 1) 

The trajectory of aircraft that are used for simulation is shown in Figure 1(a). The range and bearing are measured from 
the generated trajectory. 
 

 

(a)   (b)                                 (c) 

Figure 1: (a) shows the Maneuvering trajectory generated. (b) and (c) shows the measured range and bearing from the 
generated trajectory. 
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Estimation of Position and Velocity using Particle Filter for Maneuvering trajectory with N=1000 particles are shown 
in Figure 2, 3 and 4. 

 
(a) (b) 

Figure 2:(a) Estimation of Position of Maneuvering trajectory using 100 Monte Carlo simulations with N=1000 
particles for complete time samples. (b) Zoomed version. 

 
    (a)                                  (b) 

Figure 3:(a) Estimation of Velocity X of Maneuvering trajectory using 100 Monte Carlo simulations with N=1000 
particles for complete time samples. (b) Zoomed version. 

 
    (a)                                                                           (b) 

Figure 4:(a) Estimation of Velocity Y of Maneuvering trajectory using 100 Monte Carlo simulations with N=1000 
particles for complete time samples. (b) Zoomed version. 

In order to analyse the effect of number of particles in the performance of Particle Filter, algorithm is executed for five 
different numbers of particles M=100, 300, 500, 700, 1000 and compared the Relative RMSE (Root Mean Square 
Error).Here the Relative RMSE is given by: 

ܧܵܯܴ ݁ݒ݅ݐ݈ܴܽ݁ =
ඨ∑

(ೣೖ
ೀ್ೞషೣೖ

ಲ೎೟)మ

ಿ
ಿ
೙సభ

௫ೖ
ಲ೎೟     (4a) 
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where ݔ௞ை௕௦ is observed values and ݔ௞஺௖௧is modelled values of trajectory. ܰ is the Number of Monte Carlo Simulations 

The Relative RMSEof Position X and Position Y are plotted in Figure 5. 

 

 
(a)      (b) 

Figure 5:Position RMSE for the target tracking problem using 100 Monte Carlo Simulation with N=100, 300, 500, 700, 
1000 particles.(a)Relative X Position RMSE. (b) Relative Y Position RMSE. 

The above figure 5 shows the relative RMSE of Position X and Y is less for the Particle Filter algorithm with N=1000 
particles. As the number of particles increases, the relative RMSE of Position X and Y are decreases. It means that the 
performance of Particle filter algorithm improves with the increase in the number of particles. 
 

V.CONCLUSION 
 

In this paper, we verified particle filtering technique for a maneuvering target tracking example using a linear state 
model and a non-linear measurement model with additive white Gaussian noise in MATLAB. The effect of number of 
particles in the performance of Particle Filter algorithm is also analyzed. The results obtained from thesimulation 
clearly indicate that increase in the number of particles will give more optimal solution for the tracking problem. 
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