

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3926

Virtualized Tool for Service Performance

Validation of Middleware Components Used

In Telco Network Elements

Likhith Kumar .T.R
#1

, Manoj Thomas
*2

, Roja Reddy B
#3

M. Tech Student [DC], Dept. of Digital Communication, R.V College of Engineering, Bangalore, India
#1

Line Manager, Nokia Networks, R&D Technology Centre, Bangalore, India
*2

Assistant Professor, Dept. of Digital Communication, R.V College of Engineering, Bangalore, India
#3

ABSTRACT: Middleware is currently used in all the customized software systems in order to felicitate the

applications to majorly work on their functionality not on to much of process, memory management, load Analysis,

counter, Timers, Database [DB], fault detection & correction and other such constraints which are very important in

building the network machine software’s like what we use in 3G and 4G networks. (i.e. in IMS, IP Multimedia

Subsystems). The Middleware of IMS will provide API’s [Application Program Interfaces] which will be used by the

applications to perform their set of functionality. The middleware also provides platform for running 3
rd

 party

application software that support the functionality of the other applications on the upper layer of the stack. So this

middleware APIs have to be checked for their functionality in the maintenance mode after every new feature addition,

deletion or modification of the existing ones. So Regression Testing has to be done to validate the working of the APIs.

Since these APIs are very important for application to work fine without any malfunctioning. This paper presents the

variant of the testing technique which was followed previously in manual terms by replacing it with automated

software tool set which reduces the time, error factor prior to every software release, making the network software

application error free and work in a much effective manner.

KEYWORDS: Middleware platform, feature, service, virtualization, APIs [Application Program Interfaces], SUT

[System under Test].

I. INTRODUCTION

The software or any application to work, should have a platform which can provide services for the applications by

providing basic fault control, error handling. The OS [Operating System] itself is a platform many times for more

general applications which we use on our daily basic but for some robust heavily loaded applications running over

internet [1]; the OS alone can’t handle the software working properly which is having its own limitation. In the robust

telecommunication networks the platform should be well configured to detect the faults caused by the applications

running on it and provide fast recovery from those with a limited manual intervention. The Telco platform should have

the capability to handle the hardware and the software resources much efficiently in order to support the applications

running on it.

Limitations of OS
1. OS can’t support customized timers, counters and access to DB for some standalone special applications which

requires a layer between the Application and OS to provide the above requirements.

2. The error, fault handling capability of the OS is very limited for the applications.

3. The automatic alerting mechanism is not provided when there is any fault with the hardware or software part of the

application.

4. The OS can monitor the memory and DB Utilization only to some extent above which it requires another powerful

mechanism over that to perform the function much effectively [1].

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3927

5. High Availability of the Hardware and software cannot be achieved just by an OS, added software intelligence

should be there to detect the malfunctioning of the machine and switch over to a redundant system until the

primary system comes back to operation mode [2].

6. 3
rd

 party applications running on the Telco machines will perform huge data traffic communication which may lead

to lot of resource overhead, leading to system lockup. The OS alone doesn’t have that intelligence for effective

resource allocation in improving the system performance.

The Figure 1 gives the information about the layer distribution of the network machine stack compared with

respect to the OSI reference model [3]. The layers of the middleware stack are basically in sync with the different

layers of the OSI model. There will be interfaces between these layers to communicate within those layers and in

between the two network machines using this layered architecture.

Figure 1: Middleware stack allocation in the network machines compared with respect to OSI reference model.

The Table 1 gives the information about the protocols which are used at the different layers of the network

machine stack which is compared with OSI reference model as a standard [3]. The OS itself handles till the extent of

network layer by bundling the different types of packets coming from upper layers and routing these packet streams

over the network to the proper destination. The middleware will support the applications in properly handling these

packets by the application softwares.

Table 1: Layer wise protocol distribution in the Network Machines with OSI as the reference model

Layer name Protocols used Location on the Network machine stack

Physical Ethernet, SLAN Redhat Linux OS

Data link MAC,LLC Redhat Linux OS

IP TCP-IP, UDP, SCTP Redhat Linux OS

Transport SCCP, ISUP Middleware Services

Session SS7, SIP Middleware Services

Presentation & Application MAP, FTP,SSH,CAMEL Application Software

Advantages of the middleware over the OS:

The middleware overcomes the disadvantages of the OS in following ways [4]:

 Middleware speeds up the OS communication.

 It provides interfaces between the processes for IPC.

 It helps in handling the events and alarms if there is any change in the other middleware services and also the

changes from the application level.

 It helps in fault detection and correction.

 It provides a Man Machine interface to check for the internal communication of the subsystems and their

processes.

 It works as a runtime environment where making the applications to work smoother on their functionality by

handling the load of process and load management.

 It helps in DB management by updating the traces of the process level and the hardware level changes and their

impact on the Application Software performance.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3928

 It provides an interface to monitor the processes and their connectivity.

 It performs better memory and CPU Load management through saving the status of each and every process and

prioritizing these processes.

 It has features for automatic fault detection and control mechanism.

 It has the feature for automatic alarm handling mechanism.

 Better system failure avoidance by providing the high availability of the system resources.

As the middleware provides the support and coordination along with the OS in supporting the applications for their

proper functioning, these middleware services have to be tested for their correctness and performance in their operation

and handling the robust load conditions. To do that a sophisticated tool is required which can do the testing on the site

and provide the end results of the key performance index related to each and every service handled by the middleware

platform in the Telco network elements. The paper focus on the elimination of the manual intervention and

development of a complete automated tool which can test the performance of these services in a well advanced manner

by reducing the manual risk and errors incurred. The next section emphasizes on the traditional middleware test

mechanism and its disadvantages and the motivation to overcome that problems faced in the previous testing

mechanism.

II. LITERATURE SURVEY

Middleware Test Mechanism

The middleware has a predefined set of interfaces to the applications running over it and also to the subsystem

process of the middleware to perform the required functionality. These interfaces can be modified, added or deleted

according to the application requirements and these changes needs to be tested for any dependencies and the API

functionalities which will be done manually after every change. The process will be taken on the live network machine

and checked for its behaviour, which is a tedious and time consuming technique and requires lot of manual efforts for

testing and to monitor those tests. The manual approach is error proven in certain cases where there is dependency with

other subsystems of the middleware [5]. The middleware subsystems are basically the timers, counters, event and alarm

managers, listeners, loggers, DB managers, tracers, context managers etc… all these processes are interlinked with each

other through IPC [Inter Process Communication] where they exchange the messages between them.

Previous Testing Mechanism

The Platform was tested in a manual terms in the previous testing approach which involved lot of delay and

testing overhead leading to the limitations on the platform product quality. The Figure 2 shows the flowchart of the

testing process used in the conventional service API testing, where any changes in the services or any new services

added or deleted will be tested for its correctness by creating a Linux executable and deploying the patch with the latest

feature changes on to a live machine, if any error in the service API performance found the entire process will be

repeated once again. This testing schema remains same for all the service modules present in the middleware platform.

Figure 2: Flowchart for the previous testing mechanism

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3929

Limitations of the Previous testing Mechanism

 The previous testing strategy was had lot of drawbacks in the analysis of the issues with the API leading to the

below limitations:

 The previous testing mechanism requires a standalone live machine to test the changes each and every time,

which will not be affordable.

 The process created with changes made on the subsystem has to be taken on the live site for testing where

dependencies will be high and much of them will not be essential to test that component.

 The running of subsystem process under test on live site may lead to abnormal side effects on other subsystem

processes which many lead to non revertible errors, leading to complete stack reinstallation on live site.

 The manual efforts may lead to a failure of system many times.

 More hardware dependency, leads to more expensive test mechanism which is many times unaffordable.

 It will be difficult to automate because the development will be done one site and the testing on the other site

which takes pretty much of time to transfer the process onto the live site and test the required features and

validated results have to be transmitted back on to the development site for further processing. To overcome all

these limitations the paper presents an automated testing mechanism which can also be called as a well equipped tool

rather than a simple automation framework and this tool has the following features:

 Standalone development node testing.

 Virtualized test bed simulation.

 GUI based interface with the test bed.

 GUI based validation procedure.

The Automation frameworks can just change the manual effort to the automated terms which doesn’t satisfy the needs

of our testing mechanism. The Emphasis on the design of the tool will be made in next section.

III. DESIGN METHODOLOGY

The GUI based test tool utility has overcome the majority of limitations faced in the previous testing mechanism as

highlighted in the previous section. The proposed test tool utility performs the testing of the APIs by creating a virtual

test bed. The virtual test bed is simulated for each and every middleware services separately by virtualizing all the

necessary dependencies needed to run that service. The term virtualization here is to make the service independent of

the other services. Because of which there is no need for any live setup to run the test cases to validate the middleware

services under change. The virtualization is done at the backend as shown in the Figure 3; which will be linked with the

GUI developed to view from front end. The virtual bed constitutes of dynamic libraries which will be used by the

service under test during runtime [6]. The services are made to work standalone by minimizing the dependencies by the

test bed.

Figure 3: Virtual Bed simulation to create standalone Services

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3930

The features of the Virtualized test bed are:

 The virtual environment constitutes the service under test and dynamic libraries used during runtime of that

service.

 The service is made standalone by minimizing dependencies.

 The service will be a daemon running at backend.

Algorithm with an example: Load Analyser

Need to create a standalone service for the load analysis, so the load Analyser daemon will be the service

under test. To initiate this service a set of dependency services have to be virtualized to monitor the normal

functionality of the service undergoing the test as shown in the Figure 3. These dependencies get registered with the

service under test prior to the actual testing of the service. In the next stage the service under investigation will be

tested for its actual functionality, i.e. load analyser will detect the CPU load value, storage capability, memory used,

memory blacklisted etc…

Steps undergone for testing:

1. Make service under test, a daemon (Run on infinite loop in background)

2. Run the testcase to check for each and every interface related to load analyzer service.

3. Validate the results for the correctness of those APIs.

4. If any abnormalities in the results, send the request for further analysis of the service.

5. Repeat the steps again (from step 1 to 5)

6. If the test cases executed normally with expected outcome shutdown the service with graceful termination.

This procedure will be applicable for all the other services in the same way.

The features provided by GUI interface of the utility are:

1. The GUI provided interface to select the services to be tested and the APIS list under those services in a user

friendly approach [7].

2. The GUI has the ability to run more than one service and its API testing done sequential on a single run and

provide the stable results at the end of the test.

3. The GUI provided the slot where we can see the execution and validation result. The above features are as

explained in the Figure 4.

Figure 4: GUI Architecture provision to support the testing mechanism.

Advantages of the test setup use:

 One time creation of virtual environment

 One time creation of test cases.

 Provision to ADD and delete test cases from GUI page.

The test setup implementation and the results inferred from that is explained in the next section.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3931

IV. RESULTS AND DISCUSSION

As discussed in the previous section, the implementation is done with the help of the requirements provided in the

Table 2. The description related with the tools used for the deployment is provided on the same Table. These tools or

the utilities have to be driven with the help of some programming languages to build the logic which is as explained in

the Table 3.

Virtual Environment Simulation

The primary step involved in the deployment is to create a virtual environment without which the daemon

service cannot run on the backend to test the relative test cases. So in order to serve this situation a set of required

virtual services are created to make our required daemon process to run.

Table 2: Requirements for the tool Development

Tool Utility Software/Hardware Tool Version

Operating System Redhat Linux 6.3.2 [64 bit]

Test Automation Engine C Unit 2.1.0

Documentation Doxygen 1.8.5

Hardware platform HP or ATCA NA

Web Server Apache 2.2.15

Table 3: The Programming Languages used

Language Utility

C

Programming

Used for API implementation, Service Implementation and Build mechanisms + Virtualized test bed

creation.

C Unit Used to build CUnit Automation test cases.

J Query Used for front end GUI development.

Xml Used to render the results and fetch the contents to and from the Backend Database

Perl Used to develop script to access the web based modules

Shell Used for automation purpose.

The Figure 5 represents the required services virtualized to make the load analyser daemon to run in an infinite loop.

Only the required functionalities are simulated to make the service under test to come up. The services virtualized are

in the form of libraries which are also executables some are used as static libraries and the others may be taken during

runtime for the load analyser to work. The load analyser is a Linux binary executable as represented in the Table 4. The

Figure 6 represents the binaries linked with the load analyser service during runtime, without the linking of the

virtualized libraries the load analyser daemon process will not come up at the dev machine site.

Figure 5: The Virtual Environment for the Load Analyser service under test

Table 4: Executable formats

File File Type File Format

.so Dynamic Library Binary ELF

.a Static Library Binary ELF

.out Linux Executable Binary ELF

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3932

Figure 6: The Load Analyser service under test

The test cases are created using the C-Unit Automation Engine with C as the programming language. To run these

CUnit test cases for the API Validation [8] there should be a daemon service running at the background. This can be

controlled by the GUI from the front end. To access the GUI, we need to call the apache web server modules with the

help of a Perl script which will start the web server by loading the required information provided by the processes

running at the backend for the server start-up. As a part of validation to start the web server we need to provide the port

number and the user credentials to login to the server, the same credentials have to be provided in the web browser to

log in to the GUI home page as shown in Figure 8. The GUI home page will be linked with the other set of service

pages namely,

 The test execution config page to do the configuration setup for test execution.

 The results page to check for the validated outcome.

 The basic information page which can give information related with the list of service interfaces and their default

threshold value.

 The test summary page which can provide briefed out summary of test results.

 The results obtained will be reflected both on the GUI console and also logged on to the backend database.

The schema of the testing mechanism is as shown in the Figure 7 by taking a service “load Analyser” as an example to

explain the test execution scenario.

Figure 7: Test setup running at the back end

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3933

Figure 8: GUI initiation on the web browser by calling the backend web server start-up script.

The test cases once selected at the setup page will be subjected to execute as shown in the Figures [7-8]. The algorithm

is as provide in the below steps:

1. Setup the Test suite for the service.

2. Execute the test cases and validate the service APIs

3. Teardown the test suite of the service

4. Repeat the same steps [1-3] for the other services under queue sequentially with their respective API list to be

validated.

5. The xml file will be generated by the CUnit Validation Engine which has to be parsed to the HTML format using

xml parsing.

6. The results in the HTML format are as depicted as in the Figure 9. It represents the sample results obtained for the

load analyser service under test with its set of APIs which are validated when the service daemon is running at the

backend [9]. The load analyser related APIs are CPU load, disk usage and memory validation. These APIs are

tested in the presence of the service under test is running over which the APIs are verified. If we can get the return

values within the threshold limit then the test cases are passed else failed which will be taken for further correction

in the service logic.

Figure 9: Result obtained in html format after xml parsing of result obtained from CUnit Test Engine.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 5, May 2015

Copyright to IJAREEIE 10.15662/ijareeie.2015.0405020 3934

The tool developed provides better outcome compared to the previous manual testing approach in terms of time

consumption, probability of error, system failure rate, the node testing time, the latency in the execution cycle etc…,

which is as shown in the Figure 10. We have taken 5 units as the standard unit of comparison between the two testing

mechanisms. But the only difficulty is lot of effort is required to develop the test setup.

Figure 10: Comparison of performance impact between the proposed testing tool and the pre existing test procedure.

V. CONCLUSION

The results obtained from proposed test tool infers that is provides better performance compared to the previous

testing mechanism with respect to key performance parameters like,

 Delay or latency involved in execution.

 Manual efforts involved.

 Error occurrence probability.

 On the node [single node] deployment and testing.

The proposed testing tool has provided better performance than the previous existing testing mechanism which

proves better reliability of the proposed tool, which reduces the implementation cost and is only a one time

implementation. Effort exists in virtualizing the test bed and creates test cases; the rest is simple by monitoring the test

cases and addition or deletion of test cases if required.

VI. ACKNOWLEDGEMENTS

Sincere regards to Mr. Manoj Thomas and Mr. Dharani Basavaraju of Nokia Networks & RV College of

Engineering for providing all the necessary guidance, support and facilities for carrying out this project successfully.

REFERENCES

[1] Prashant Shenoy, Purushottam Kulkarni, Krithi Ramamritham, "Middleware versus Native OS Support: Architectural Considerations for

Supporting Multimedia Applications," International Conference of Computer Networking, vol. 46, pp. 23 - 32, 2011.
[2] Coluccio R, Ghidini G, Reale A, Levine D, "Online stream processing of machine-to-machine communications traffic: A platform comparison,"

IEEE Symposium on Computers and Communication (ISCC), vol.25, pp. 1-7, 2014.

[3] Zimmermann H, "OSI Reference Model--The ISO Model of Architecture for Open Systems Interconnection," IEEE Transactions on
Communications, vol 28, pp. 425 - 432, 2013.

[4] Steegmans F, Mercouroff N, Ceccaldi B, "Mu3S: a middleware platform for telecommunications information networking,"

Telecommunications Information Networking Architecture Conference Proceedings, vol 36, pp. 131 - 133, 1999.
[5] Pitt J.V, Mamdani E.H, Hadingham R.G, Tunnicliffe A.J, "Agent-oriented middleware for telecommunications network and service

management," IEEE Colloquium AI for Network Management Systems, vol 49, pp. 3-5, 2011.

[6] J.Archana, Senthil Raja Chermapandian, Saravanan Palanive, "Automation framework for localizability testing of internationalized software,"
International Conference on Human Computer Interactions (ICHCI), vol 24 , pp. 1-6, 2013.

[7] Jun Li, Moore K, "A Runtime and Analysis Framework Support for Unit Component Testing in Distributed Systems," 40th Annual Hawaii

International Conference on System Sciences, vol 31, pp. 261c, Jan 2007.
[8] Wawrzyniak P. Korbel P, Borowska-Terka A, "Student information delivery platform using telecommunications open middleware APIs,"

Computer Science and Information Systems (FedCSIS), vol 23, pp. 871 – 874, 2013.

[9] Li Feng, Sheng Zhuang, "Action-driven automation test framework for Graphical User Interface (GUI) software testing", IEEE Autotestcon,
vol 8, pp. 22 – 27, Aug 2007.

