

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6010

VIP Implementation for Mil-Std Manchester

Encoder- Decoder Using System Verilog

Nisha G R
1
, Aswathy Krishnan

2

Scientist/Engineer, SF, QDAC/QRAG/SR/ VSSC, Trivandrum, Kerala, India
 1

PG Student [Applied Electronics], Dept. of ECE, MG University College of Engineering, Thodupuzha, Kerala, India
2

ABSTRACT: This paper describes the implementation of Verification Intellectual Property(VIP) for MIL-STD- 1553

Manchester Encoder-Decoder logic, using SystemVerilog HDL. VIP is implemented with in-built features like error

checking mechanisms, test bench generation as well as appropriate routines to create bus functional models to verify

the HDL design code as part of V&V activity. It is designed by generating proper verification plan with directed and

error test cases. Coverage Driven Verification technology is adopted here to measure the efficiency of VIP. Functional

coverage, code coverage and System Verilog Assertions (SVA) are analysed here. The VIP efficiency is ensured and

verified here by 100% code coverage and functional coverage analyses. Simulations, SVA and coverage driven

analyses are done using Questa Sim EDA tool and described here as results.

KEYWORDS: VIP , Manchester encoder ,Decoder ,SystemVerilog Assertions (SVA) ,SystemVerilog, Code

Coverage, Functional Coverage.

I.INTRODUCTION

The VIP is a verification model which helps the designers and verification engineers for the validation of their design's

functionality. It can be used in most of the simulation based verifications. VIP composed of functional coverage blocks,

traffic generators, protocol monitors and bus functional models. Each VIP Comprises the correct routines to create a

bus functional models or protocols and also necessary frame work for the test bench generation and checking.

Commercially available VIP will give improved time -to -market and reduce risk for the IP dealers and also for the

customers. With the interface specification, one can check or verify the complaints by using protocol monitors and

checkers. A customer can check or verify system level function and validate target performance by initiating

application specific traffic. It can easily connect or mingled with other tools. VIP includes with coverage engine, which

recognize the corner cases and test fullness.

VIP implementations of Manchester encoder-decoder are available but VIP is created in first time for Mil-Std

Manchester. Previously VIP has been created for RS 232 and UART. Mardav Wala et al [1] proposed integrating and

verifying intellectual property blocks using platform express and model Sim. Platform based design is a proven method

for minimizing the time and risks involved in designing and verifying a SOC. But it is not possible to use a hardware

simulator for checking functional correctness of the component. This paper describes a coverage driven analysis and

assertion based verification method for VIP efficiency measurement. This is a new method created especially for Mil-

Std Manchester.

Here, VHDL implementation of HD 15530 [2] Manchester Encoder-Decoder digital logic is used as DUT for

implementing the VIP. This Encoder-Decoder design logic is divided into encoder unit and decoder unit. Most of the

requirements of mil std 1553 is met by this circuit. Encoder produces the sync pulse with parity bit as well as the

encoded data bits. The decoder recognizes the valid sync as well as decoding the data bits with parity.

II. ENCODER OPERATION

The Encoder requires a single clock with a frequency of twice the desired data rate applied at the SEND CLOCK input

[2]. The divide by six counters is provided on chip which can produce the SEND CLOCK and dividing the DECODER

CLOCK. The Encoder’s cycle begins with ENCODER ENABLE .ENCODER ENABLE is high for one word length

or twenty ENCODER SHIFT CLOCK periods. During the low-to-high transition of the ENCODER SHIFT CLOCK, a

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6011

high on SYNC SELECT input will produce a command sync or a low will actuates data sync. When the Encoder is

ready to receive the data, At that time SEND DATA output will go high and it remain high for sixteen ENCODER

SHIFT CLOCK periods. Data clocked into serial data input with the every high-to-low transition of the ENCODER

SHIFT CLOCK .So the data can be sampled on the low to- high transition of the ENCODER SHIFT CLOCK. The sync

bit and Manchester II encoded data are transmitted through the BIPOLAR ZERO and BIPOLAR ONE outputs. The

additional parity bit is added with the encoded signal.

Fig 1. Block Diagram of Encoder

If ENCODER ENABLE is continuously high, it encoded the parallel data without any gap. If ENCODER ENABLE

must go low, it prevents a consecutive word from being encoded. To discard the Encoder transmission, must be applied

a positive signal at MASTER RESET. A low-to-high transition on SEND CLOCK will initializes the Encoder for a

new word.

Fig .2 Encoder Timing Diagram

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6012

III. DECODER OPERATION

The Decoder requires a single clock with a frequency of 12 times the desired data rate applied at the DECODER

CLOCK input. The Manchester II coded data is represented in two ways. The BIPOLAR ONE and BIPOLAR ZERO

inputs will receive data from a comparator sensed transformer as specified in Military Spec of 1553. The UNIPOLAR

DATA input will accept non-inverted Manchester coded data. The Decoder is continuously monitors the data input

lines for a valid sync character. When a valid sync is identified, the valid sync is indicated on COMMAND or DATA

SYNC output. When the output is high, valid sync recognize the command and output remain high for sixteen

DECODER SHIFT CLOCK periods, otherwise it will generate data word for low sync condition.

.

Fig 3. Decoder block diagram

The TAKE DATA output will go high and Decoded data will transmitting through SERIAL DATA OUT in NRZ

format. Decoded bits can be shifted on every low to high transition of DECODER SHIFT CLOCK. It may adjust until

the TAKE DATA go high. After all sixteen decoded data bits has been transmitted the data is checked for odd parity. A

VALID WORD output will indicates the successful reception of decoded data without any parity errors. During the low

to high transition of DECODER CLK will abort the decoder transmission.

Fig .4 Timing Diagram of Decoder

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6013

IV. FUNCTIONAL SIMULATION

IV.A VERIFICATION PLAN

This is generated by going through the design requirements and specifications. Plan express distinct or separate testing

procedure by borrowing reserved and unique test cases and by which functionality of the design ensured. Also bringing

out bugs in the code if any. Both directed and error test cases are derived here. Some of the Test cases for encoder and

decoder are given below.

IV .B SAMPLE TEST CASES-ENCODER

Case1: Encoder reset

 All outputs at known state w.r.to releasing edge of “reset”

Case2: Parallel to Serial Encoder Operation

 Initiate with Encoder enable

 Cycle last for 20µs or one word length

 Select valid sync bit. High to low indicates the command and low to high indicates Data word.

 Sync bit last for 3µs

 16 bit serial data input will send at every high to low transition of encoder clock (16 µs)

 Encoded datas are serial out with parity through - "Bipolar one& Bipolar zero"

 Random data words are checked for ‘N’ cycles.

IV .C SAMPLE TEST CASES-DECODER

Case1: Decoder reset

 All outputs at known state w.r.to releasing edge of “reset”

Case2: Serial to parallel Decoder operation

 Serial 16-bit data input accept from the MIL-STD 1553 bus

 Select valid sync bit. High to low indicates the command and low to high indicates Data word.

 Take Data output will go high.

 16 bit Decoded data Parallel out with odd parity through "Serial _data out"

IV .D VERIFICATION ENVIRONMENT

The verification environment is managed with Questa Sim Simulator, ver.10.0, test bench and SVA in System Verilog

HDL and DUT in VHDL. A separate assertion files in system verilog are bind with the corresponding test benches to

validate design specifications and requirements SystemVerilog Assertions (SVA) are basically a "statement of fact"

made by verification engineer[3]. Assertions can verify local to complex conditions in our design. It not only locate

bugs but also help to find total covered design logic. And so it acts as the functional checker for entire DUT operations.

Functional simulations are also checked with the help of waveform window extensively.

Questa Sim is capable to simulate all HDL types like VHDL, verilog and System Verilog designs supporting with other

features like coverage analysis, backtrace analysis data path flow, FSM analysis, report generation, Cover group

analysis for functional coverage.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6014

Figure 5. Verification Environment

The whole system specification has been checked by using SVA. Any of the specification has been violated, one can

see the failure message in assertion window.

IV .E TEST BENCH FOR SIMULATIONS

The term “test bench" specifies the stimulus were used to initiate a predestined input sequence for the design and to

examine its response. The test bench describes the stimulus for the DUT along with its response for the outputs. Here,

the test bench is written in SystemVerilog with predetermined input sequence and they may be included with external

data files. The main task of the test bench is that to verify what input patterns to provide to the design and what is the

expected throughput of a properly working design.

V .COVERAGE DRIVEN ANALYSIS

V .A CODE COVERAGE

Code coverage is a verification technology is used to recognize what code has been executed. It has to be checked only

after the simulation part. If the design may look like a good design but the problem is that it can contain an unknown

bugs. It is hardly possible to know the verification is functionally correct, with cent percent certainty and all of the test

bench simulate favourably or successfully. The main objective of the code coverage is to find out which code has to

forget to exercise in the design. If the test bench was not exactly executed, it should be returned in the design. So, code

coverage technology is used for the cent percentage certainty.

It can be classified into four categories. They are Statement coverage, Path coverage, Expression coverage and FSM

coverage.

Statement coverage: It is also known as Block coverage, where the block is series of statements. If a single statement is

executed, all of the statements in the block will be executed. By the verification suite, it measures how much of the

total line of code were executed. Figure 6 shows the analysis window for the statement coverage verification. It will be

generated after the simulation part. The tick () mark indicates that statement code which include in the DUT are

functionally correct. If shows (x) mark ,indicate that design is functionally incorrect. It will quickly identify and we can

browse which statements that were not executed.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6015

Fig .6 statement coverage window of encoder

Conditional coverage: It will be recognize where conditional code was missed in the design. The below diagram

indicates, the conditional code coverage of encoder section and which is included in the design was functionally

correct.

Fig .7 conditional coverage window of encoder

Path coverage : There is lot of ways to execute a sequence of statements. It is used to measure all of the possible ways

,you can execute the statements . The no. of possible path increases with control statements.

Fig .8 Path coverage window of encoder

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6016

Expression coverage: It measures the various ways of decisions that present in design. The analysis shows the

expression coverage of encoder section.

Fig .9 Expression coverage window of encoder

FSM : It is usually, coded using a choice in a case statement, unvisited state clearly identified with uncovered

statements. During the verification time it clearly or correctly identifies the state transitions. Figure 9 shows the bubble

diagram for FSM. It indicates that state transitions of decoder sections.

Fig .10 FSM coverage window of decoder

Branch and Toggle coverage : A signal is considered to have fully toggled when it has experienced at least one rising

edge and at least one falling edge during the simulation .Figure Shows these coverage windows , which indicates that

all the branch and toggles present in the design of encoder -decoder logic was functionally correct

Fig .11 Branch coverage window of encoder

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6017

Fig .12 Toggle coverage window of Decoder

V .B FUNCTIONAL COVERAGE APPROACH

Functional coverage measures how much of the original design specification has been exercised by the test bench

through simulation. It is concerned with implemented function. The individual scalar value or expression of a sample is

known as coverage point. The main purpose of the coverage point is to ensure the important value have been noticed in

the sampled value. It can be categorized into two; they are cross coverage and Transition coverage. Cross coverage

measures the possible occurrence of the combinational of values. Whereas the transition coverage is manually

specified from the implementation. The correctness of the design and the verification completeness can be verified

through a true independent path which is provided by transition coverage.

State transition can be specified by using transition coverage. Example 1 specifying the transitions for the cover point.

covergroup CoverPort;

coverpoint port

{

bins t1 = (0 => 1), (0 => 2), (0 => 3);

}

endgroup

Example .1 Transitions for a cover point

Transaction tr;

covergroup Covecnt1;

ecnt2: coverpoint tr.ecnt2;

ecnt1: coverpoint tr.ecnt1;

cross ecnt1, ecnt2;

endgroup

Example .2 sample for cross coverage

The example.2 generates cover points of tr.ecnt1 and tr.ecnt2. ecnt1 and ecnt2 are counter1 and counter2. These two

points were express all combinations. It will measure two or more cover points at the same time.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6018

5. C ASSERTION BASED VERIFICATION

The specifications of Manchester encoder and decoder section is verified with concurrent assertion properties. The

concurrent assertion may specify the behaviour of the design by using statements. Example 3 describes the sample

assertion property for the Manchester encoder. The main specification requirements for this property is ,to ensure the 5

clock width of serial data out (eo0 and eo1) as well as encoder enable should be low.

property eleven_ee;

 @(posedge c12) disable iff (!reset)

 (ee==0)|=> ##5 (eo0 | | eo1) ;

 endproperty

assert property(eleven_ee)

else

$error("The eleven_ee fails");

Example 3. Encoder assertion property

Assertion Property expressions can be specified with an implication operator, either |-> or |=>.When the specified

condition with "disable iff" is incorrect, the assertion does not work. The example 3 shows that if the reset become true

at the positive edge of the clock during the evaluation of the sequence as well as the encoder disable condition .That

means when the enable is low ,preceding 5 clock width of serial data out (eo0 or eo1) are high and ensured the required

specification. When the negative edge of the clock, the required specification is not ensured and it will never evaluate

to true and generates the failure count.

Figure.13(a) Assertions- Hit/Miss Report of encoder

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6019

Figure.13(b)Assertions- pass Report of encoder

Table.1, shows the different assertion properties of encoder logic. This is used for the verification purpose.

ASSERTION

DESCRIPTION REMARKS

four_eo0

property four_eo0;

 @(negedge c12) disable iff (reset) !reset|=>

eo0=={(1'b1)};

endproperty

assert property(four_eo0)

else $error("The reset_eo0 fails")

Reset condition

six_esm

property six_esm;

 @(posedge c12) disable iff (!reset)(esm==2'b01 &&

ecnt2==4'h0&& ecnt1==4'h5) |=> eo1=={(1'b1)};

 endproperty

assert property(six_esm)

else $error("The six_esm fails")

Encoder output

condition

nine_esm

property nine_esm;

 @(posedge c12) disable iff (!reset)

 (ecnt1==4'h0 && esm==2'b11) |=>ecnt2=={(4'h0);

endproperty

assert property(nine_esm)

else $error("The nine_esm fails")

counter2

condition

Table.1 Assertion - encoder

A sample assertion property is described below on Manchester decoder.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6020

Specification: Signal ‘gne’ will be active high, if dcnt1=0000h & dcnt2=0001h and becomes active low after 12 more

clk cycles.

property nine_de_gne ;

 @(posedge c12) disable iff (!reset)

 (dcnt2==4'h1 && dcnt1==4'h0) |=>

 ##1 gne ##12 !gne ;

endproperty

assert property(nine_de_gne)

else $error("The de__gne width fails")

Example 3. Decoder assertion property

The property describes that if the reset become true at the positive edge of the clock during the evaluation of the

sequence, 12 clk width of 'gne' is ensured. The error case of this specification is ensured by asserting with negedge

whether the property on this specification is valid or not and it is ensured by the failure count.

Figure.14(a) Decoder Assertions- Hit/Miss

Figure.14(b) Decoder Assertions- Pass

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6021

Table.2 shows some of the different assertion properties excised on Decoder logic. This is used for the verification

purpose.

ASSERTION

DESCRIPTION

REMARKS

one_din1

property one_din1;

 @(posedge c12) disable iff (reset) !reset|=>

din1=={(1'b0)};

 endproperty

 assert property(one_din1)

 else $error("The reset_din1 fails")

Reset

condition

seven_do16

property seven_do16;

 @(posedge c12) disable iff (!reset) (de==1)|=> {(do16

== dsr)};

 assert property(seven_do16)

 else $error("The de_do16 fails")

Output

condition

eight_de property eight_de;

 @(posedge c12) disable iff (!reset)

 (dsm==2'b00 && dcnt2==4'h1&& dcnt1==4'h0) |=> de

##1 !de;

 endproperty

assert property(eight_de)

 else $error("The de_dcnt1 fails")

State

machine

condition--1

clk width of

'de' is ensure

Table.2 Assertion- Decoder

VI .SIMULATION RESULTS

The SystemVerilog simulation is performed to verify the DUT of MIL-STD Manchester encoder decoder logic design

by using the VIP implemented in System Verilog. Functional integrity of DUT is checked by using Assertions and

cover groups along with necessary test inputs.

Here, six types of simulation results are reported.

 Encoder with assertion (Miss)

 Encoder with assertion (hit)

 Decoder with assertion (Miss)

 Decoder with assertion (Hit)

 Code coverage-100%

 Functional coverage-100%

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6022

As shown in the figure .15(a), 15(b), the encoder and decoder with assertion fails (missed Cases). The red arrow

indicates the points where the assertion property has failed. Thus, we can easily check where the specification or

general requirements are missed or failed property, using the waveform.

Fig 15 (a) Encoder - Assertion (Miss)

Fig 15 (b) Decoder - Assertion (Miss)

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6023

Fig 16 (a) & (b) shows Encoder and Decoder with the assertion (hit). One can see that all the properties are hit and

simulated successfully.

Fig 16 (a) Encoder - Assertion (Hit)

Fig 16 (b) Decoder - assertion (Hit)

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6024

As shown in the figure. 17 (a,b) ,the total coverage of the verified sections. The verified sections are functionally

correct and all the assertions and codes were covered.

Fig 17 (a) encoder code coverage

Fig 17(b)Decoder code coverage

Functional coverage is measured by using coverage group. Coverage group is defined in the test bench module.

Coverage group encompasses the cover points, arguments .It contains one or more cover points, all these data points

are sampled at same time.

covergroup Covecnt1;

coverpoint tr.ecnt1

 {

bins zero = {0};

bins lo = {[1:3], 5}; bins hi[] = {[8:$]}; bins misc = default;

}

 endgroup

The test bench, samples the all possible values of the counter using the coverage group. The sample ecnt1 (encoder

counter) has 16 possible values. The bin_1 called zero and it check number of times that the counter (ecnt1) is 0, when

sampled. The next 1 to 3 and 5 are kept into a single bin 'lo'. The higher eight values are grouped into separate bin.

 ISSN (Print) : 2320 – 3765

 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2015

Copyright to IJAREEIE DOI: 10.15662/ijareeie.2015.0407027 6025

VII. CONCLUSION

In this paper, the implementation of verification intellectual property for MIL-STD Manchester encoder-decoder

described VIP is implemented by adopting verification technologies like code coverage, functional coverage and

Assertions using SystemVerilog and Questa Sim EDA tool. The entire logic of Manchester Encoder-Decoder is verified

by doing coverage analyses. The efficiency of VIP is measured by 100% code coverage and functional coverage on the

DUT. As it is attained the cent percentage on its coverage, the implemented VIP is selected to verify IP of 15530

Manchester encoder-decoder logic used in Indian space programs.

REFERENCES

[1] Mardav Wala ,”Integrating and verifying Intellectual property blocks using platform express and Model Sim ,Circuits and Systems , 48th
Midwest symposium ,pp 758-761 ,2005.

[2]Data sheet on HD-15530

[3] Clifford E. Cummings "SystemVerilog Assertions Design Tricks and SVA Bind Files" SNUG Sanjose , pp 5-42 ,2006

[4]Stuart Sutherland, Simon Davidmann .System Verilog For Design, Springer, 2nd Edition ,pp137-166, 2006

[5] Chris Pear , System Verilog For Verification , Springer,2nd Edition,pp.295-302 ,2008
[6]Janic Begeron, Synopsys, Inc. Writing Test benches using System Verilog , Springer , pp.38-46 ,2006

[7]Donmills, System Verilog assertion for design engineers , SNUG Sanjose ,2006

[8] Questa Sim 10.0 User Manual

BIOGRAPHY

.

Nisha G .R ,done the graduation in Bachelor of Engineering in Electronics and Communication Engineering

from Bharathiyar University in 1996 ,Tamil Nadu .Joined in VSSC of ISRO in 1997 and acquired 17 years of

working experience in the field of design and development of onboard avionics digital systems. Also having

the experience in the field of testing and characterization of complex and sophisticated VLSI components like

On board FPGA and ASIC designs, Microprocessors ,Microcontrollers ,Memory Devices etc as part of

quality assurance programs

Aswathy Krishnan , received her graduation in Bachelor of Technology in Applied Electronics and

Instrumentation Engineering from Mar Baselios Christian College of Engineering and technology in

2013, Idukki ,kerala. currently PG Scholar at Mahatma Gandhi University College of engineering in

Applied Electronics and her research interest include HDL Designs and Control systems.

