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ABSTRACT: This paper illustrates the implementation of a Logarithmic Multiplier in two novel approaches by 
modifying a basic architecture. The increasing need of multiplier circuits due to collaboration of the VLSI and signal 
processing domains requires processors and digital circuits to be fast at the first place. However, many such 
applications such as video compression allow a minor compromise on accuracy. Logarithmic multipliers provide 
increased speed, low power consumption and low memory requirement at the expense of accuracy. This paper takes 
into account two techniques to achieve greater accuracy on a Logarithmic Multiplier without however affecting the 
speed, power and memory advantages. The final results are compared on the basis of Maximum Error Percentage and 
Power Dissipation. The proposed architecture as well as the referenced architecture were implemented on Xilinx 
xc3s1500-5fg676 FPGA and simulated in Verilog on Xilinx 14.5 ISE. Practical implementation was done at 25MHz 
with signal (toggle) rate of 12.5 %. 
 
KEYWORDS:Mitchell’s Algorithm, Pipelining, Signed Multiplier, Error Correction Circuit, Select Logic, Recursive 
Logic. 

I.INTRODUCTION 

 

Multipliers play a major role in various applications like signal processing. Since multiplication is a time consuming, 
hardware consuming arithmetic function, it proves to be a bottleneck in various mathematical applications. Especially 
in signal processing applications it gets amplified. Although, in such applications speed is a factor that holds more 
weightage than accuracy [3], [4], [5], [6]. Moreover, signal processing often deals with distorted signals or improper 
outputs given by sensors, so inaccurate results are inevitable. Thus, it is preferable to achieve speed at the expense of 
accuracy. Additional minute errors introduced with multipliers do not affect the results significantly and they can still 
be acceptable in practice. Thus, methods like logarithmic multiplications are suitable for applications which hold speed 
of computation more important than the accuracy. 
 
It is imperative to compare such different methods to decide which will yield the best results. This paper sheds light on 
two such methods of Simple Iterative method known as Signed Multiplier and Recursive method. After implementing 
the two methods on FPGA, we have based our conclusions on the results achieved. The Recursive method is better in 
all respects including hardware consumption, speed and power consumption. A tabulated organized conclusion of 
results obtained will be presented at the end section of this paper 
. 
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II.METHODS USING LOGARITHMIC MULTIPLICATION 

 
In Logarithmic Multiplication the conversion of operand takes places from Integer Number System to Logarithmic 
Number System (LNS). The multiplication is accomplished in three stages, including the following steps: 

1. Calculation of the operand logarithms. 
2. Addition of the operand logarithms.  
3. Calculation of Antilogarithm of the result. 

This method takes advantage of the logarithmic property by the virtue of which multiplication is substituted by addition. 
LNS multipliers can be generally divided into two categories, one based on methods that use lookup tables and 
interpolations, and the other based on Mitchell’s algorithm (MA) [10]. Generally, Mitchell’s Algorithm based methods 
suppressed lookup tables due to hardware-area savings. However, logarithm and anti-logarithm cannot be calculated 
exactly. Hence, they need to be approximated, which stands as weakness of this method. The binary representation of 
the number N can be written as:  

N=2k (1+෍2i-k
k-1

i=j

ܼ௜) =  2௞(1 + ݇)                                                 (1) 

Where k is a characteristic number or the place of the most significant bit with the value of ’1’, Zi is a bit value at the i-
th position, x is the fraction or mantissa, and j depends on the number’s precision (it is 0 for integer numbers). Owing 
to the property of logarithm, we choose the base of logarithm as 2. Thus, after taking 2 as the basis of logarithm, the 
equation reduces to the following,          
(ܰ)ଶ݃݋݈ = ଶ൫2௞(1݃݋݈  + ൯(ݔ = ݇ + ଶ(1݃݋݈  +  (2)                        (ݔ
 Generally, the expression log2 (1+x) is approximated. Thus, logarithmic-multipliers perform a trade-off between speed 
and accuracy. 
 

III.MITCHELL’S ALGORITHM BASED MULTIPLIER 

 
Mitchell’s Algorithm is one of the most significant methods in Logarithmic Number System [10]. It is employed in 
applications where the accuracy is not on the highest priority. The binary representation of operands initial equation (1) 
is used here. But, logarithm and anti-logarithm have to be approximated. The logarithm of the product is: 
)ଶ݃݋݈ ଵܰ. ଶܰ) =  ݇ଵ + ݇ଶ + ଶ(1݃݋݈ + (ଵݔ + ଶ(1݃݋݈ +  ଶ)               (3)ݔ
 
The expression log2 (1+x) is approximated with x and the logarithm of the two numbers’ product is expressed as the 
sum of their characteristic numbers and mantissas: 
logଶ(Nଵ. Nଶ) ≈  kଵ + kଶ + xଵ +  xଶ                                                   (4) 
  
The characteristic numbers k1 and k2 represent the places of the most significant operands’ bits with the value of ’1’. 
The final MA approximation for the multiplication depends on the carry bit from the sum of the mantissas and is given 
by: 

(Nଵ. Nଶ)୑୅ =  ቊ 2୩ଵା୩ଶ(1 + xଵ +  xଶ), xଵ + xଶ < 1
2୩ଵା୩ଶାଵ(xଵ +  xଶ),  xଵ + xଶ ≥ 1

                        (5) 

 
The final approximation for the product (5) requires the comparison of the sum of the mantissas with ’1’. 
The sum of the characteristic numbers determines the most significant bit of the product. The sum of the mantissas is 
then scaled (shifted left) by 2୩ଵା୩ଶor by2୩ଵା୩ଶାଵ, depending on the x1+x2. If x1+x2 < 1, the sum of mantissas is added 
to the most significant bit of product to complete the final result. Otherwise, the product is approximated only with the 
scaled sum of mantissas. 
      Numerous attempts have been made to improve the MA’s accuracy. Hall [5], for example, derived different 
equations for error correction in the logarithm and antilogarithm approximation in four separate regions, depending on 
the mantissa value, reducing the average error to 2%, but increasing the complexity of the realization. Abed and Siferd 
[1], [2] derived correction equations with coefficients that are a power of two, reducing the error and keeping the 
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simplicity of the solution. Among the many methods that use look-up tables for error correction in the MA algorithm, 
McLaren’s method [9], which uses a look-up table with 64 correction coefficients calculated in dependence of the 
mantissas values, can be selected as one that has satisfactory accuracy and complexity. A recent approach for the MA 
error correction, reducing the number of bits with the value of ‘1’ in mantissas by operand decomposition, was 
presented by Mahalingam and Rangantathan [8]. 
 

IV.SIMPLE ITERATIVE LOGARITHMIC MULTIPLIER 
 
The proposed design presents a better, more simplified way of logarithm approximation introduced in (5). It also 
introduces an iterative algorithm with several possibilities for achieving miniscule error. In such a methodology, 
pipelining can be comfortably used boosting the speed of the design and enabling it for high level of parallelism. The 
correction terms could be calculated almost immediately after the calculation of the product (Nଵ. Nଶ)୑୅has been started, 
once simplification of equation (5) is done. 
From equation (1), we can derive a correct expression for the multiplication: 
 
P୲୰୳ୣ =  Nଵ. Nଶ =  2୩ଵ(1 + xଵ). 2୩ଶ(1 + xଶ) 
 
=  2(୩ଵା୩ଶ)(1 + xଵ +  xଶ) +  2୩ଵା୩ଶ(xଵxଶ) (6) 
 
 
To avoid the approximation error, we have to take into account the next relation derived from (1): 
x. 2୩ = N−  2୩   (7) 
 
The combination of (6) and (7) gives: 
P୲୰୳ୣ =  Nଵ. Nଶ =  2୩ଵା୩ଶ + ൫Nଵ −  2୩ଵ൯2୩ଶ + ൫Nଶ −  2୩ଶ൯2୩ଵ +  ൫Nଵ −  2୩ଵ൯. ൫Nଶ −  2୩ଶ൯      (8) 
 
 
Let 
Pୟ୮୮୰୭୶

(଴) =   2(୩ଵା୩ଶ) + ൫Nଵ −  2୩ଵ൯2୩ଶ + ൫Nଶ −  2୩ଶ൯2୩ଵ                                                        (9) 
 
be the first approximation of the product. It is evident that 
P୲୰୳ୣ =   Pୟ୮୮୰୭୶

(଴) + ൫Nଵ −  2୩ଵ൯. ൫Nଶ −  2୩ଶ൯                                                                        (10) 
 
The absolute error after the first approximation is, 
E(଴) =  P୲୰୳ୣ −   Pୟ୮୮୰୭୶

(଴) =  ൫Nଵ −  2୩ଵ൯. ൫Nଶ −  2୩ଶ൯                                                            (11) 
 
 
We can now add the approximate value of E(0) to the approximate product Papprox as a correction term by which we 
decrease the error of the approximation. 
Consider, 
௧ܲ௥௨௘ =  ௔ܲ௣௣௥௢௫

(଴) (ଵ)ܥ +  (12)                                                                                              (ଵ)ܧ +

௔ܲ௣௣௥௢௫
(ଵ) =  ௔ܲ௣௣௥௢௫

(଴)  (13)                                                                                                       (ଵ)ܥ +
 
If we repeat this multiplication procedure with i correction terms, we can approximate the product as 

௔ܲ௣௣௥௢௫
(௜) =  ௔ܲ௣௣௥௢௫

(଴) (ଵ)ܥ + (ଶ)ܥ + (௜)ܥ +⋯+ =  ௔ܲ௣௣௥௢௫
(଴) +  ∑ ௜(௝)ܥ

௝ୀଵ                                (14) 
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V.HARDWARE IMPLEMENTATION 
 

We implemented two methods of computing logarithmic multiplication namely, signed multiplication and recursive 
logic which are mentioned in section B and C of this part. 

A. Basic Architecture 

As per given in [1], the hardware realization of a 16-bit logarithmic multiplier, consists of a Basic Architecture. This is 
a 4-stage pipelined architecture that calculates the RHS of the equation (9) re-written below- 

  

Pୟ୮୮୰୭୶
(଴) =   2(୩ଵା୩ଶ) + ൫Nଵ −  2୩ଵ൯2୩ଶ + ൫Nଶ −  2୩ଶ൯2୩ଵ 

 

The Basic Architecture consists of two Power evaluation blocks (PEB) (PEB is illustrated in Fig. 1 and 4), two 32-bit 
barrel shifters, two encoders, two 32-bit adders and a decoder unit. When 2 16-bit numbers are input to this unit, they 
are passed through a Power Evaluation Block (PEB). This block is used for detecting the leading ones in the input 
numbers. It gives the power index number k1 which falls between values 0 to 15. Further, a priority encoder outputs the 
value of k1 and k2, which are then added by a 5-bit adder. 

Meanwhile, in the first and the second stage, the value of (N1 – 2k1)2k2 and (N2 – 2k2)2k1 is calculated using a 32-bit 
shift left register. 

 

A decoder calculates 2k1+ k2 which is then input to an adder in the fourth stage that calculates the P(0)
approx. 

 

B. Signed Multiplier Architecture 

The signed numbers’ approach only operates with the 2’s complement of input numbers. Additional logic required for 
Fig. 1 Pipelining approach to calculate addition of 3 terms in the equation of P(0)

approx 
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the Basic Architecture is given in Fig. 1. It uses a bank of EXOR gates to convert the numbers into unsigned numbers. 

The sign bit of final product further depends on the sign bit of both the input numbers. The other architectural features 
as the placement of buffers for pipelining and the number of pipelining stages is similar to the one referenced earlier. 
Surprisingly, the power dissipated as well as the relative error both parameters get improved in this method. As shown 
in Fig 1 below, the number of stages of pipelining remains same in spite of adding the logic. One may add another 
stage 5 after the final adder and EXOR gates to investigate the performance of the architecture.he proposed architecture 
has been given below- 
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In the implementation of blocks that calculate further approximations, the architecture computes similar to the 
referenced paper [1]. However, we have put additional circuit at the output end to convert back the 2’complement 
number into the desired output. The Basic Architecture blocks in Fig 2 below are also known as Error Correction 
Circuits since they provide the approximations of the error as shown in equation (11). An EXOR bank does this 
purpose efficiently. We computed approximations up to P(2)

approx. The stage-wise diagram for the same has been 
illustrated below. 

Fig. 2 Complete Iterative Architecture for calculation of 3 successive approximations 
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C. A novel approach using recursive logic 

Basic Idea: 
The whole idea behind this approach is making the term P(0) 

approx. equal to P true. For this to happen we must expand and 
calculate the RHS of the following equation discussed earlier. 

௔ܲ௣௣௥௢௫
(௜) =  ௔ܲ௣௣௥௢௫

(଴) (ଵ)ܥ + (ଶ)ܥ + (௜)ܥ +⋯+ =  ௔ܲ௣௣௥௢௫
(଴) +  ෍ܥ(௝)

௜

௝ୀଵ

 

To obtain an accurate result, we need to perform those many number of iterations, after which the residue becomes zero. 
That is P(0)= Ptrue. Precisely the number of iterations required is equal to the number of bits with value ‘1’ of that 
operand which has less number of 1’s among the two. 
Recursive logic harnesses this fact that by re-performing the iterations till residue is zero we can significantly reduce 
the average as well as the total error thereby acquiring an accurate output. 

 
Select Logic: 
For repeating the calculations, we must have two things. One, a clarity of which input to feedback to the circuit. Second, 
a select logic that knows when to stop calculating. We have implemented a Select Logic that outputs a status signal, 
one 16-bit output and requires a select line and a 16-bit input. This block is essentially used to poll continuously 
whether one of the operand is zero or not. Till that, iterations are necessary andP(0) is not equal to P true. After the 
residues become zero, the select logic automatically stops the iterations and the circuit is now ready for taking new set 
of 16-bit input and loads the perfect output into the stage – 5 buffers as shown in the architecture diagram of the 
multiplier. 
The architectural diagram of the Select logic is as follows- 

Fig 3 Select Logic Block 

Consider 2 inputs M1 and M2. At initial stage, the select pin is high, indicating that N1 = M1 and N2 = M2. Further, as 
iterations start, the value of N1 and N2 is set equal to the residues.After the ‘i’ required number of iterations, the value 
of (N1

(i) – 2k1) and(N2
(i) – 2k2) approaches zero. At this stage, maximum accuracy is achieved and the circuit no longer 

needs to carry out iterations. Hence the Select logic now is ready to accept new inputs. 

Recursive Approach: 
Our design is structured to inculcate recursive approach that feeds back the residues to continue computing 
approximations. On the final side as well, the previous approximation Pi-1is fed back to keep adding the approximations. 

 



 
     
    ISSN (Print)  : 2320 – 3765

     ISSN (Online): 2278 – 8875 

International Journal of Advanced Research in  Electrical, 
Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 7, July 2015 
 

Copyright to IJAREEIE                                                           DOI: 10.15662/ijareeie.2015.0407117                                        6506 

This additional logic is illustrated in the following diagram. Fundamental blocks such as the four stages and the 
elementary parts as encoder, decoder, 32-bit barrel shifter and 32-bit adder all remain the same.Fig. 4 Basic 
Architecture Enhanced with the Recursive Logic Blocks 

One unique mention about this block is that it doesn’t need to be implemented in the cascaded logic as illustrated in Fig 
2. It uses the same hardware for successive iterations. The 3 approximation result of signed multiplier and final result 
of this recursive logic based multiplier were compared for conclusions. 

VI.CONCLUSION AND COMPARISON 

 
In this paper, we have compared two approaches to implement a logarithmic multiplier. After realizing the circuits on 
Xilinx xc3s1500-5fg676 FPGA, we opine that the recursive approach is more accurate and less power consuming. 
Since the Error correction circuits are calculated using single block with recursive logic area and power dissipation are 
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greatly reduced. However, even signed multiplier approach is also an efficient when compared with only the basic 
method discussed in [1]. 
 
Total delay required to calculate output depends on number of approximations required before residue becomes zero. 
This leads to variable output delay. Thus, we conclude that recursive logic is more efficient in terms of accuracy, power 
consumption and area utilization but is slightly slower as compared to traditional approaches. 
Following table provides empirical values of error and power dissipated obtained after successful implementation. 

TABLE I 

COMPARISON TABLE BASED ON MAXIMUM ERROR IN PERCENTAGE (%) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen that maximum error percentage decreases to almost half in case of signed and touches zero in case of 
recursive logic. 

 
TABLE II 

COMPARISON BASED ON POWER DISSIPATION AS ACQUIRED FROM XILINX XPOWER 
 

 E rmax 

BA 2.5 

BA + 1 ECC 6.25 

BA + 2 ECC 1.56 

BA + 3 ECC 0.39 

Signed (3ECC) 0.18 

Recursive Logic 0.00 

 

 Logic and Signals 
(mW) 

IO Blocks (mW) Quiescent (mW) Total (mW) 

BA 3.72 51.26 152.06 207.04 

BA + 1 ECC 7.32 51.62 152.66 211.6 

BA + 2 ECC 10.66 51.67 153.53 215.36 

BA + 3 ECC 13.37 51.93 153.42 218.72 

Signed (3ECC) 6.34 49.1 159 214.44 

Recursive Logic 4.45 35.67 150.53 190.65 
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There is an improvement in terms of power dissipation as well. While the total power improvement in signed approach 
is barely 1.8%, the architecture using recursive logic exhibits an improvement of 12%! 
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