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ABSTRACT: The multi-core processor cache hierarchy design system that communicates faster and more efficiently 

between cores, through better memory management and cache organization. The architecture has three levels of cache: 

L1, L2, and L3. Level1 cache is non-unified with 32KB of instruction cache and 32KB of data cache. Level 2 is 256 

KB and it is for both data and instructions. Level 3 is 256KB in size and shared between all the cores. Architecture does 

share its last level cache memory. This reduces the “snooping” coherency traffic between the cores, thus reducing 

bandwidth and improving efficiency. The benefit of sharing L2 memory is important because of increased performance 

it can provide. That is, if a core is not utilizing its memory L2 memory, other cores can L1 take advantage of that and 

use the extra available L2, thus reducing hit time and increasing performance. The new cache organization is known as 

MESIF (Modified, Exclusive, Shared, Invalid, Forward). The Quick Path Interconnect bridges that gap by providing 

efficient point-to-point Communication path between processors by facilitating high-speed non-uniform Memory 

accesses (NUMA). This also increases the bandwidth communication between the processor and high-speed hardware 

like PCI Express. 
 

I. INTRODUCTION 

 

The core architecture, made use of multiple cores on a single die to improve performance over traditional single-core 

architectures. But as more cores and processors were added to a high-performance system, some serious weaknesses 

and bandwidth bottlenecks began to occur.[1] After the dual-core Core processor’s initial generation, the cores 

communicates via system memory which creates large delays due to limited bandwidth on the processor bus. Adding 

more cores increased the burden on the processor and memory buses, which diminished the performance gains that 

could be possible with more cores. The new architecture sought to improve core-to-core communication by establishing 

a point-to-point topology in which microprocessor cores can communicate directly with one another and have more 

direct access to system memory. Memory controller for DDR3 which handles everything for communication between 

one system and memory.[2-5] If two systems try to read or write to DDR3 memory at the same time, however, there is 

a great risk the data read or written will not be accurate. This project also helps to design a traffic controller, or arbiter, 

that will substitute the system that turns it to send requests while blocking requests from the other system. An arbiter 

will prohibit read/write collisions and maintain request order to ensure the memory is holding accurate data. There are 

several challenges to designing an arbiter that interacts with a DDR3 memory controller. First is that the arbiter must 

work around the memory’s refresh rate. During a refresh, there can be no communication with the memory. In addition, 

the arbiter must arrange all read and write requests from the systems in order. If one system  which sends a read before 

the other which sends a write, the read must be executed first. Finally, the arbiter cannot allow a single system to use 

the arbiter for too long. By considering all these factors, the developed arbiter must be successful in a testing 

environment.  

 

II. SYSTEM ARCHITECTURE 
 

A. Architectural Approach 

 

The approach to the new architecture is more modular than the Core architecture which makes it much more flexible 

and customizable to the application. The architecture really only consists of a few basic building blocks. The main 

blocks are a microprocessor core (with its own L2 cache), a shared L3 cache, a Quick Path Interconnect (QPI) bus 

controller. an integrated memory controller (IMC), and graphics core. 
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Fig. 2-1. Eight-core  Processor cache hierarchy[1] 

 

With this flexible architecture, the blocks can be configured to meet what the market demands. For example, the 

Bloomfield model, which is intended for a performance desktop application, has four cores, an L3 cache, one memory 

controller, and one QPI bus controller. Server microprocessors like the Beckton model can have eight cores, and four 

QPI bus controllers. The architecture allows the cores to communicate very effectively in either case. The specifics of 

the memory organization are described in detail later. Figure 2-1 is an example of an eight-core processor cache 

hierarchy with two QPI bus controllers. This is the configuration of the processor used in [1]. 

 

B. Branch Prediction 

 

Another significant improvement in the new microarchitecture involves branch prediction. For the Core architecture, 

designed what they call a “Loop Stream Detector,” which detects loops in code execution and saves the instructions in 

a special buffer so they do not need to be continually fetched from cache. This increased branch prediction success for 

loops in the code and improved performance. We  took the concept even further with the new architecture by placing 

the Loop Stream Detector after the decode stage eliminating the instruction decode from a loop iteration and saving 

CPU cycles. 

 

C. Out-of-order Execution 

 

Out-of-order execution also greatly increases the performance of the architecture. This feature allows the processor to 

fill pipeline stalls with useful instructions so the pipeline efficiency is maximized. Out-of-order execution was present 

in the Core architecture, but in the architecture the reorder buffer has been greatly increased to allow more instructions 

to be ready for immediate execution.[7] 

 

D. Instruction Set 

 

These are single-instruction, multiple-data (SIMD) instructions that take advantage of data-level parallelism for today’s 

data intensive applications (like multimedia). Architecture refers to the new instructions as Applications Targeted 

Accelerators (ATA) due to their specialized nature. For example, a few instructions are used explicitly for efficient text 

processing such as XML parsing. Another instruction is used just for calculating checksums. 

 

III. CACHE AND MEMORY SPECIFICS 

 

A. Transition Lookaside Buffer 

 

The transition lookaside buffer (TLB) plays a critical role in the cache performance. It is a high-speed buffer that maps 

virtual addresses to physical addresses in the cache or memory. When a page of memory is mapped in the TLB, it is 

accessed quickly in the cache. When the TLB is too small, misses occur more frequently. The TLB in the architecture is 
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much larger than existing architectures which allows for many more memory page references to remain in the TLB. In 

addition, Intel made the TLB dual-level by adding an L2 TLB. The second-level TLB is larger than the first level and 

can store up to 512 entries. The gains from the TLB changes are significant, but the most dramatic improvements come 

from the changes to the overall cache-memory layout.[6] 

 

B. Cache and Cache Coherency 

 

In the Core architecture, each pair of cores shared an L2 cache. This allowed the two cores to communicate efficiently 

with each other, but as more cores were added it proved difficult to implement efficient communication with more pairs 

of cores. For the architecture each core has its own L2 cache of 256KB. Although this is smaller than the L2 cache of 

the Core architecture, it is lower latency allowing for faster L2 cache performance. Architecture does still have shared 

cache, though, implemented as L3 cache. This cache is shared among all cores and is relatively large. This cache is 

inclusive, meaning that it duplicates all data stored in each individual L1 and L2 cache. This duplication greatly adds to 

the inter-core communication efficiency because any given core does not have to locate data in another processor’s 

cache. If the requested data is not found in any level of the core’s cache, it knows the data is also not present in any 

other core’s cache.  

 

To insure coherency across all caches, the L3 cache has additional flags that keep track of which core the data came 

from. If the data is modified in L3 cache, then the L3 cache knows if the data came from a different core than last time, 

and that the data in the first core needs its L1/L2 values updated with the new data. This greatly reduces the amount of 

traditional “snooping” coherency traffic between cores. This new cache organization is known as the MESIF 

(Modified, Exclusive, Shared, Invalid, Forward) protocol, which is 

a modification of the popular MESI protocol. Each cache line is in one of the five states:[8] 

 

• Modified - The cache line is only present in the current cache and does not match main memory (dirty). This line 

must be written back to main memory before any other reads of that address take place. 

 

• Exclusive - The cache line is only present in the current cache and matches main memory (clean). 

 

• Shared - The cache line is clean similar to the exclusive state, but the data has been read and may exist in another 

cache. This other cache should be updated somehow if the line changes. 

 

• Invalid - The cache line is invalid. 

 

• Forward - This cache line is designated as the responder to update all caches who are sharing this line. With the extra 

“Forward” state, the excessive responding among shared cache lines is eliminated. 

 

C. Memory Controller 

 

The location of the memory controller was a significant change from the Core processors. Architecture integrates the 

memory controller to the processor die with the hope to reduce the latency of memory accesses. In keeping with the 

modular design approach, We introduced flexibility into the size of the memory controller and the number of 

channels.[10] 

 

The first processors were the quad-core models which had a triple-channel memory controller. To show the 

effectiveness of this on-chip design, Another benefit to an on-chip memory controller is that it is totally independent of 

the motherboard hardware. This provides the processor more predictable memory performance that will run just as fast 

on any hardware platform. In a two system configuration, one system is given permission to communicate with the 

arbiter. The permission periodically switches from one system to the other (i.e. switches alternately) regardless of 

whether either of systems need to send commands. When a system is given permission to the arbiter they are allowed to 

send read or write commands; these commands are buffered inside FIFOs within the arbiter. When system two is given 

permission to the arbiter, the arbiter executes the buffered commands of system one by sending them to memory. 

[12]This buffering scheme enables un-synchronized communication between the systems and the arbiter and enables 
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heavy data throughput. Ultimately, the developed arbiter allows the systems to communicate at speeds of up to 25 Gb/s. 

The effective transfer rate of the two systems is dependent on both their own transfer rate and the transfer rate of the 

other system that is connected to the arbiter. This relationship is very similar to a model used for evaluating the 

equivalent resistance of two resisters connected in parallel.[9] 

 

D. QuickPath Interconnect Bus 

 

With the memory controller now located on the processor die, the load on the Front-side Bus (FSB) for a 

singleprocessor system has been greatly reduced. But for multiprocessor systems (like servers) there is a need for faster 

and more direct chip-to-chip communication, and the FSB does not have the bandwidth to fill that need. So Intel 

developed the QuickPath Interconnect (QPI) bus as a means of connecting multiple processors to each other in addition 

to the chip sets. On an entry-level architecture system with one processor the QPI bus becomes an improved FSB 

allowing for higher bandwidth communication between the processor and high-speed hardware like PCI Express. As 

more processors are added to the sytem, the QPI bus  also provides an efficient point-to-point communication path 

between processors by facilitating high-speed non-uniform memory accesses (NUMA). Now that we have given an 

overview of the most important[11] 

 
IV.   IMPLEMENTATION 

 

 
 

Fig. 4-2. System-to-Arbiter Write state diagram[2]. 

 

 A.  System-to-Arbiter Write  

 

The portion of the state machine shown in Figure 4-2, displays the flow where a system is granted permission to either 

send read or write commands. During state S8, the arbiter_block asserts both its sys_rdy and sys_wdf_rdy signals. This 
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notifies the system that it has permission to communicate with the memory (through the arbiter). When the system first 

enters S8 the system can either send write commands or read requests to the arbiter. [14] 

 

To send a write request, the system must assert the fill_wr_cmd, after having set starting address and the first 64-bits of 

data on their respective busses. Then, for the following seven clock cycles, the arbiter enters state S11 where the system 

must send the remaining 448 bits of data, 64 bits at a time. During these 7 clock cycles the arbiter will pick-up 

whatever is on the data bus and use it to fill the wd_fifo. During state S11, the system no longer has permission to send 

any new commands, and this will be evident by the de-asserted sys_rdy signal. Once the system finishes writing a full 

512 bit data burst, the arbiter’s state machine returns to state S8, where it awaits for a new command from the system. 

To exit out of the S8-S11 loop, the system must be at S8 and one of the following events must happen: the systems 

sends a read request or arbiter_block timer expires. [15] 

 

• Arbiter timer 

 

The arbiter_block module contains a timer register which is used to keep track of how many clock cycles have elapsed 

since the system has been given permission to communicate with the arbiter. This is used to limit the number of clock 

cycles the system is given every time it has a turn. 

 

B. System-to-Arbiter Read-back  

 

When the arbiter block first re-enters its System-to-Arbiter branch and finds that it has buffered data in its rd_fifo, it 

enters state 7. [16]During this state, 512 bit data packets are released from rd_fifo every 8 clock cycles. These 512 bit 

data packets are split up into a series of eight 64 bit packets which are then sent back to the system. Sys_read_data[0] 

shows the 0th bit of each one of these 64 bit data packets, while readback_data_reg shows eight bit representation of 

the 512 bit data packets as they are being released from the rd_fifo. These eight bits consist of every 64th bit in the 512 

bit data packet. The read-back data that the system receives appears to match the write data the system sent, validating 

that the arbiter design works properly. However this is very limited validation of the design and is not enough to assure 

that it will work correctly when operating over millions of transactions.[13] 

 

V.  RESULTS 

 

A. System-to-Arbiter Write  

 

The arbiter was designed using Verilog, implemented using Xilinx Integrated Software Environment (ISE) .Figure 5-1, 

below, shows how at the 34th cycle in system-to-arbiter branch, Sys1 begins sending write commands. Fill_wr_cmd 

signal is asserted four times, once at the beginning of each new write command. The four writes are sent to addresses 

zero to three, as can be noted from looking at the sys1_address waveform. The data is sent 64 bits at a time, where 

every 0th bit in the 64 bits makes up 8 bit value corresponding to the address. This bit is apparent on the 

sys_wdf_data[0] signal which starts out equaling to a binary value of 00 at address zero , and binary 11 at address three. 

The stimulus module which sends these commands, attempts to send write data to addresses for address 0-31, but it is 

halted because the timer register reaches a value of 63, so the arbiter block must exist the branch, so Sys2’s arbiter 

block may enter it.  

 
Figure 5-1, System-to-Arbiter Write 



     

    ISSN (Print)  : 2320 – 3765 

    ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

  Vol. 4, Issue 1, January 2015 

Copyright to IJAREEIE                                                                 10.15662/ijareeie.2015.0401093                                                    120 

B. System-to-Arbiter Read-back  

 

When the arbiter block first re-enters its System-to-Arbiter branch and finds that it has buffered data in its rd_fifo, it 

enters state 7. During this state, 512 bit data packets are released from rd_fifo every 8 clock cycles. These 512 bit data 

packets are split up into a series of eight 64 bit packets which are then sent back to the system. Sys_read_data[0] shows 

the 0th bit of each one of these 64 bit data packets, while readback_data_reg shows eight bit representation of the 512 

bit data packets as they are being released from the rd_fifo. These eight bits consist of every 64th bit in the 512 bit data 

packet. The read-back data that the system receives appears to match the write data the system sent, validating that the 

arbiter design works properly. However this is very limited validation of the design and is not enough to assure that it 

will work correctly when operating over millions of transactions. Figure 5-2, below, shows how the system working 

with syste-to-arbiter read back. 

 

 
 

Figure 5-2, system-to-arbiter read back. 
 

VI. CONCLUSION 

 

In this paper I have taken a close look at microarchitecture. I have given an overview of the major improvements to the 

architecture multi-core architectures with a special focus on the memory organization and cache coherency scheme. I 

have looked into several studies that have shown by state diagram and  the effectiveness of these improvements. The 

inclusive, shared L3 cache has reduced much of the complexity and overhead associated with keeping caches coherent 

between cores. The integrated memory controller reduces memory access latencies. I have shown that the architecture 

scales well; it allows for as many cores as are needed for a particular application. Previous and competing architectures 

do not scale nearly as well; more cores can be added, but the limitations of the memory organization introduce 

bottlenecks to data movement. This position architecture well to be a flexible solution to future parallel processing 

needs. 
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