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ABSTRACT: in this paper, we propose a automatic segmentation method that uses saliency and gradient information 

for   registration of dynamic contrast enhanced (DCE) magnetic resonance (MR) images of the heart. DCE-MR images 

are characterized by rapid intensity changes over time, thus posing challenges for conventional intensity-based 

registration methods. Saliency information contributes to a contrast invariant metric to identify similar regions in spite 

of contrast enhancement. Its robustness and accuracy are attributed to a close adherence to a neurobiological model of 

the human visual system (HVS). This ability motivated us to explore the efficacy of such a model for registering DCE-

MR images. The data penalty is a combination of saliency and gradient information. The smoothness cost depends 

upon the relative displacement and saliency difference of neighboring pixels.  

 

KEYWORDS: Contrast-invariant, elastic registration, magnetic resonance  (MR) images, Markov random fields 
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I. INTRODUCTION 

    

   REGISTRATION is one of the fundamental problems in image processing and is important for many applications 

such as medical image analysis, building prior models from training images, and segmentation of image sequences. 

Registration is of two types: rigid and non rigid registration. Non rigid registration for correcting elastic deformation of 

organs is a very important preliminary step for automated or semi automated medical image analysis. Over the years, 

many methods have been proposed to meet the challenges of registering elastic deformations in images. A detailed 

review on the principles   of non rigid image registration can be found in [1] and [2]. By designing appropriate cost 

functions, existing elastic registration frameworks have successfully registered a wide variety of images. Popular 

techniques include elastic models [3], fluid flow methods [4], [5], optical flow-based methods [6], thin plate splines [7], 

freeform deformations (FFD) using B-splines [8], [9], and radial basis functions [10]. Mutual information-based 

methods have been used for non rigid registration in [8] and [11]. 

 

   Recently, Markov random fields (MRFs) were used for elastic registration of natural and medical images by 

formulating it as a discrete labeling problem [12]–[14]. Shekhovtsov et al. in [12] use pixel blocks in formulating the 

MRF energy function to compensate for non rigid deformations in synthetic and real images. Smoothness was imposed 

based on the relative displacement between neighboring pixels. Tang and Chung in [15] use MRFs to register brain 

images and impose smoothness using first derivatives. In [13], Glocker et al. introduce a novel approach for dense 

image registration. The objective function is defined using MRFs and the dense deformation field is defined using a 

registration grid with interpolation, thus allowing for dimensionality reduction. Mahapatra and Sun in [14] use saliency 

information to identify corresponding regions in a pair of pre- and post contrast enhanced kidney perfusion images and 

elastically register those using MRFs. 

 

    Majority of the non rigid registration algorithms are purely intensity based and do not give satisfactory results in the 

presence of intensity changes. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a popular 

technique used for the functional analysis of internal organs. A contrast agent is injected intravenously into the patient 

and a sequence of MR images obtained over a period of time. The flow of contrast agent leads to large intensity 
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changes over a short time period and highlights various cardiac tissues. By monitoring this intensity variation, 

radiologists perform a functional analysis of the heart to facilitate diagnosis and early identification of cardiovascular 

diseases. This requires a similarity metric to deal with intensity change. Visual saliency, which is a measure of how 

different a region is from its surroundings, provides useful information to establish correspondence between pre- and 

post contrast images [14]. 

 

A. Saliency-Based Registration 

    

    Salient regions or points are prominent in a scene or image. Thus, it is natural that these salient landmarks influence 

the task in hand, e.g., registration. Previous works have used salient landmarks  and regions for registration and 

matching [16]–[18]. Ou et al. in [16] use Gabor attributes at each   voxel to identify salient structures. They do not 

exclusively define saliency as a metric but use the concept of “mutual saliency” that measures the uniqueness of 

correspondence between two landmarks and assigns weights for the purpose of registration. Use of Gabor coefficients 

makes the method computationally expensive involving numerous calculations in selecting the right attributes. Other 

works, [17], identify salient regions using entropy-based scale-invariant region features defined in [18]. The entropy 

based saliency model (or scale-space maps) of [18] is sensitive to noise. Further, any change in intensity (as in 

perfusion images) alters the entropy measure of a neighborhood leading to different saliency measures for the same 

voxel. The neurobiology-based saliency model of [19] has the following advantages over scale space maps [20]: 1) less 

sensitive to noise and intensity change; 2) lower computation time; and 3) close agreement with human fixations [21].  

   Our study uses visual saliency information in MRFs for non rigid registration of dynamic MR images of the heart. It 

can effectively correct elastic deformations in the presence of intensity change due to flow of contrast agent. The 

contribution of this paper is twofold. First, we introduce a modified neurobiological saliency model that determines 

saliency information based on local information. This is suitable for elastic registration where matching local similarity 

features is important. It is different from [14] where the saliency model gave a global map, making the procedure 

sensitive to large deformations. Second, we achieve registration using a combination of gradient and saliency 

information because intensity information can be misleading for contrast enhanced images. The use of saliency maps is 

inspired by the working of the human visual system (HVS).      Humans have a remarkable capability to match images 

or objects in the presence of noise or intensity change.      Therefore, we have explored a computational model of the 

HVS in registration tasks. It proves to be robust and identifies similar pixels in spite of contrast enhancement. Edge 

orientation information complements saliency information in the registration process. The description of our modified 

saliency model, which is based on principles of neurobiology, is given in Section II. In Section III, we describe the use 

of saliency and edge orientation information for elastic registration using MRFs. Subsequently, we show results for real 

patient cardiac and liver datasets in Section IV and report our conclusion in Section V. 

 

II. SALIENCY MODEL 

 

    Saliency defines the degree to which a particular region is different from its neighbors about certain features such as 

intensity, edge orientation, color, etc. It is based on a biologically plausible architecture proposed in [22]. Visual input 

is first decomposed into a set of topographic feature maps and different spatial locations compete for saliency within 

each map, such that only locations that stand out from their neighbors are highlighted. These feature maps are then 

combined to form a final saliency map that highlights the most salient regions in an image.  

 

   The original model by Itti-Koch [19] gives a saliency measure that is more suited for global registration tasks like 

rigid registration [20]. Elastic registration aims to match pixels based on local neighborhood information. For the 

saliency maps to reflect the local information, we modify the original model by using a local neighborhood of a pixel 

instead of a Gaussian pyramid to determine a pixel’s saliency. Feature maps corresponding to intensity and edge 

information are computed for each image. Let F(s) denote the feature value at pixel s in feature map F. The 

neighborhood of s is denoted    by Ns. According to neurobiological studies, the field of view of the eye’s fovea covers 

an area of 1◦ [23], i.e., when we look at a point, information from a neighborhood of 1◦ is also processed. An area of 1◦ 

is equivalent to a pixel neighborhood of size 21 × 21 [23]. The response function of cortical cells is a Gaussian 

function, i.e., further away a point less is its influence on the central pixel. Thus, to calculate how different a pixel is 

from its surroundings with respect to a certain feature, a sum of weighted difference of feature values is calculated, i.e., 
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( ) exp( || ||) | ( ) ( ) |F i i

i

D s s s F S F S          (1) 

   where DF indicates the difference map for feature F;  si is the  i
th 

 pixel in the 21 × 21 neighborhood of pixel s; ||s – si|| 

denotes the Euclidean distance between s and si . F(si) denotes the feature value at pixel si . 

 

   The difference maps represent different modalities and varying extraction mechanisms. Before combining them, we 

normalize the maps so that salient objects appearing strongly in a few maps are not masked by noise or less salient 

objects present in other maps. A map normalization operator, N(.), comprising the following steps is used. 

1) Normalize the values in the map to a fixed range (0 · ··M) to eliminate modality- or feature-dependent amplitude 

differences. We set M = 1 for all feature maps in our experiments. 

2) Find the location of the map’s global maxima M and Calculate   m , the average of its other local maxima. 

3) Globally multiply the map by (M − m )
2
 . The biological motivation behind N(.) is the coarse replication of lateral 

inhibition mechanisms where neighboring similar features inhibit each other via specific, anatomically defined 

connections[24]. The two difference maps, DI for intensity and DO for edge orientation, are normalized, and the final 

saliency map Γ is the weighted average given by 

1 1( ) (1 ) ( )Iw N D w N Do      . (2) 

   W1 is a weight that determines the relative contribution of each feature to the final map. Edge information being a 

more robust metric for matching pixels in a pair of contrast enhanced images is given greater importance (i.e., w1 = 

0.3). The importance of a neurobiology-based visual saliency model on a registration task can be accessed from the fact 

that landmark points are those determined by the user to convey important information for registration. The choice of 

landmarks is a natural result of their visual importance in terms of intensity and edge orientations. 

Fig. 1 shows images from different stages of contrast enhancement (first row) along with the saliency maps obtained 

using our modified saliency model (second row) and the original model of [19] (third row). Fig. 1(a) shows the 

reference image for a dataset and Fig. 1(b)–(d) shows the floating images corresponding to different stages of contrast 

enhancement. Their respective saliency maps using our modified model are shown in Fig. 1(e)–(h). They are very 

similar to each other in spite of the intensity change due to contrast enhancement, and also capture the fine structures 

and other landmarks in the actual image. Although there are minor differences in the saliency map, it is able to capture 

the change in shape of the left ventricle (LV) due to deformations.         
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Fig. 1.  Saliency maps of contrast enhanced image sequence. Cardiac images from different stages of contrast 

enhancement are shown: (a) target frame, (b)– (d) images from different stages of contrast enhancement. (e)–(h) 

Respective saliency maps from our modified saliency model. The saliency maps are seen to be similar; (i)–(l) saliency 

maps obtained using the original model in [19]; the saliency maps are sparse and exhibit lot of variability. (m) Color 

bar for the saliency maps. Color images are for illustration purposes. 

  

A. Saliency Maps for Cardiac MRI 

 

      This is in stark contrast to the saliency maps of the original model of [19] [Fig. 1(i)–(l)]. Those maps do not provide 

information on the finer structure of the cardiac muscles which is essential for elastic registration. They are sparse and 

do not reflect the change in shape of the LV. Thus, our modified saliency model allows us to match different regions 

for similarity in spite of contrast enhancement. 

 

B. Limitations of Saliency 

   

   Saliency is not always a perfect contrast invariant feature, and may occasionally assign different saliency values to 

corresponding pixels in a pair of contrast enhanced images. In Fig. 1(g), the saliency values at the upper edge of the LV 

are not the same as in Fig. 1(e), (f), and (h). The use of intensity information in (2) may play a role in the limitations of 

saliency-based registration. The changing intensity could influence the saliency maps, especially for perfusion images. 

Although gradient orientation information acts as a more robust contrast invariant metric, the contribution of intensity 

toward saliency cannot be completely ruled out. Psychophysical studies in [23] clearly establish the importance of both 

intensity and edge information in determining saliency. As a result, we give greater importance to gradient orientation 

information when calculating saliency maps.    Thus, we may infer that intensity information could have a role in the 

limitations of saliency for registration. Another common characteristic observed in perfusion MRI is the change in 

intensity of the background due to artifacts arising from image acquisition. This may lead to different saliency maps for 

images from similar stages of contrast enhancement. Although this is not observed very frequently, it can lead to 

misregistration between images. 

 

III. METHOD 

 

A. Saliency-Based Registration 

 

   The goal of registration is to match each pixel in the floating image to the most similar pixel in the reference image, 

and the feature depends on the type of images being registered. MRFs are used for discrete labeling problems and a 

smooth solution is obtained by constraining the relative displacement between neighboring pixels to be within a 

specified range, so that they have similar displacement labels. A combination of gradient and saliency information is 

used to register DCE images because intensity information can be misleading for registering contrast enhanced images. 

 

B. Markov Random Fields 

 

   The energy function of an MRF takes the following form: 

 

                         

( , )

( ) ( ) ( , )s s t

s P s t N

E x Ds x Vst x x
 

             (3) 

Where P denotes the set of pixels sx   denotes the label of pixel s ∈ P; N is the set of neighboring pixel pairs. 

 1 2

s s sx x x   denotes the displacements along the two axes. The labels of the entire set of pixels are denoted by x. 

Ds is a unary data penalty function derived from observed data that measures how well label sx  fits pixel s, Vst and  is 

a pair wise interaction potential used to impose smoothness and measures the cost of assigning labels sx  and tx  to 

neighboring pixels s and t. 
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1) Data Penalty Term: Ds assigns a penalty to a pixel s taking on a particular label sx  .We define Ds as a 

combination of saliency and gradient information. We refer to the block centered at pixel s in an image as block s. A 

pixel block is used to calculate the data penalty value for greater accuracy and robustness. Ds is given by 

                
1

( ) 1 ( , ) cos( , )
2

s s sDs x w x s x s    
                (3) 

 ( , )sw x s is a function of saliency information and cos( , )sx s  is a function of edge information. cos( , )sx s  is a 

normalized metric depending on edge magnitudes and orientation angles of the pair of pixels. 

 

2) Pairwise Interaction Term: Being the interaction term between the pixel and its neighbors,  ( , )s tVst x x  plays 

an important role in ensuring continuity or smoothness in the registration framework. We define it as 

                         

0.002, 2 0.4

0.002, 3 0.4

,

s t

s t

x x and s t

Vst x x and s t

otherwise

     


     



       (4) 

 

C. Optimization Using Modified Narrow Band Graph Cuts 

 

    Pixels are represented as nodes V p in a graph G which also consists of a set of directed edges E that connect two 

nodes. The edge weight between two neighboring nodes is the smoothness term while the data penalty term is the edge 

weight for links between nodes and label nodes (terminal nodes). The optimum labeling set is obtained by severing the 

edge links in such a manner that the cost of the cut is minimum. The number of nodes is equal to the number of pixels 

N p and the number of labels is equal to L. For every node, the data penalty term is determined as a function of the 

corresponding floating image and the reference image. Details of graph construction and optimization can be found in 

[26]. Note that although each pixel is a node in the graph, the data penalty is derived from a block of neighborhood 

pixels for robustness. Narrow band graph cuts (NBGC) are used to increase the optimization speed of an MRF energy 

function [27]. An initial solution is obtained for a coarse resolution image. It is propagated to higher resolutions where 

the candidate solutions are confined to a narrow band. The objective is to reduce the computation time by decreasing 

the number of nodes in the graph. This can be achieved when there is a reliable way to determine which pixels are 

important for optimization and which are not. 

  

D. Calculation of Registration Error 

    

    A quantitative evaluation of registration accuracy is necessary to judge the effectiveness of any algorithm. The 

results of registration are generally compared with reference (or ground truth) parameters that help us determine the 

accuracy of the algorithm. However, it is difficult to get ground truth parameters for elastic registration because each 

pixel may have different displacement vectors. A common approach is to simulate deformations of known magnitudes 

and use the magnitude of recovered parameters to calculate the error. Simulated deformations may not replicate 

deformations found in real-world data. Moreover, simulated deformations could be biased (either favorably or 

unfavorably) toward certain registration frameworks.  

   Observations about our algorithm.                                                                                 1) Since our saliency map is 

based on the principles of neurobiology, it is a robust similarity metric in the face of contrast enhancement and noise. In 

combination with gradient information, it increases registration accuracy. 

2) Saliency in smoothness formulation adds to the method’s robustness. Saliency being more reliable than edge 

magnitude is more effective to determine whether neighboring pixels in If belong to the same object or not. 

3) Saliency information helps in reducing computation with the identification of pixels relevant for registration (less 

than 50% of original number). A coarse-to-fine approach reduces the number of labels and hence, the computation 

time. 
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IV. EXPERIMENTS AND RESULTS 

 

A. Cardiac Perfusion MRI 

 

   Cardiac images were acquired on Siemens Sonata  MR Scanners following bolus injection of Gd-DTPA contrast 

agent. The image dimensions varied from (60 − 71) × (75 − 83) with the pixel spacing equivalent to 1.5 mm. The 

entire scan consists of 60 frames for each dataset. Contrast agent flows into the right ventricle, then into the LV, and 

finally into the myocardium. The acquired datasets were all in 2-D and a total of 12 datasets were used to test our 

method. Our approach to determine the 

 

 
Fig. 2. Average Err values for all 12 cardiac datasets before and after registration. 

  

Results for Int, Sal, GI, and GSI are shown. registration error is outlined in Section III-D. We evaluate registration 

performance based on the following criteria: normalized mutual information (NMI), Woods criteria (WC) for 

multimodal images in [28], and average registration error of pixels (Err). For each of the aforesaid criteria, we use 

MRFs with the following similarity measures: sum-of-squared differences using intensity (Int), sum-of-squared 

differences using saliency (Sal), gradient information (GI) i.e., w(xs, s) = 1 in (4), and a combination of gradient and 
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saliency information (GSI). Additionally, we also compare the performance of NMI-based FFD method of [8]. The 

method is referred to as FFD. 

 

   Fig. 3 shows results for a typical cardiac dataset where saliency information leads to more accurate registration. After 

registration is complete, we use the deformation field obtained from each floating image to deform its LV contour so as 

to match the LV in the reference image. This deformed contour is then overlaid on the corresponding floating image 

and is shown in red for rows 1–4 of Fig. 3. Columns (1)–(3) denote the images in the first four rows. Each column 

shows a different floating image corresponding to different stages of contrast enhancement, and each row shows results 

for different similarity metrics. The reference image for this dataset is shown in        Fig. 3(a). The outline of the LV in 

the reference image is shown in blue for rows 1–4. This gives an idea of the degree of deformation in each floating 

image, the extent of deformations that can be recovered using each method, and most importantly, the accuracy of each 

method. For an ideal registration, the red contour and blue contour should completely overlap and any gap between the 

two contours indicates registration error. The first row shows results for GSI followed by results of GI, Int, and Sal. The 

best registration is achieved for GSI as is evident from the minimal gap between the red and blue contours. 

 

Int shows the worst performance because of its exclusive dependence on intensity information. This is observed 

especially in the first and third images of the third row. Because of its ability to match corresponding regions in 

contrast enhanced images (see Fig. 1), Sal performs better than Int. However, its performance degrades with increasing 

noise levels. GI performance is more or less the same as Sal. A close observation shows 
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Fig.3. Results  for registration of cardiac images. Boundary of the LV (from If ) deformed using the obtained motion 

field     (in red) is overlaid on floating image. Blue contour is the outline of the LV in the reference image, shown in (a). 

First row shows results for GSI, second row shows results for GI, third row shows results for Int, and fourth row shows 

results for Sal. Columns (1)–(3) indicate floating images corresponding to different stages of contrast enhancement. 

Each column corresponds to the same floating image. (a)–(f) show difference images corresponding to the floating 

image in column (3): (a) reference image; (b) difference image before registration; difference after registration using (c) 

GSI; (d) GI; (e) Int; and (f) Sal. For the superimposed contours and difference images areas of misregistration using GI, 

Int and Sal are highlighted using yellow arrows. 

 

    However, by the combination of saliency and gradient information, GSI corrects these defects. The improvement in 

registration error (from Table I) is crucial for applications where correct diagnosis needs very accurate registration. Fig. 

3(a)–(f) shows results based on difference images. The reference image is shown in Fig. 3(a), while the floating image 

is shown in Column (3). The difference image before registration is shown in Fig. 3(b). Fig. 3(c)–(f) shows, 

respectively, the difference images obtained after registration using GSI, GI, Int, and Sal.  

 

     As expected, GSI demonstrates the best registration accuracy. The regions of inaccurate registration in all images 

using the other three metrics are indicated by yellow arrows. Quantitative performance measures are shown in Table I 

for four scenarios, i.e., 1) Pre–Pre where the reference and floating images are both from the pre contrast stage; 2) Pre–

Post where the reference image is from post contrast stage and the floating image is from pre contrast stage, or vice 

versa; 3) Post–Post where the reference and floating images are both from the post contrast stage; and 4) Overall which 

gives results for registering an entire image sequence comprising of pre- and post contrast images, and we choose one 

reference image that shows all tissues and organs clearly.  

 

   The values are for three evaluation criteria (NMI, WC, and Err) and five similarity metrics (Int, Sal, GI, GSI, and 

FFD). After accurate registration, NMI increases while WC and Err decrease compared to values before registration. 

Using intensity information does not show a significant improvement in results which indicates its limitations for 

registering perfusion images. For the other metrics, we observe improvement in registration with GSI showing the best 

results. The average error for the 12 datasets before registration varied from 2.1 to 4.5 mm indicating different degrees 

of motion and deformation. For accurate registration, the registered images are expected to have maximum error values 

of 1.2 mm. After registration using GI, the average Err varied from 1.2 to 1.8 mm with a maximum error of 2.8 mm. 

The average Err for GSI was between 0.7 and 1.2 mm with a maximum error of 1.8 mm. The maximum Err values for 

Int was 3.1 mm with the average ranging from 2.4 to 2.7 mm. For Sal, the maximum error was 2.4 mm and the average 

values were in the range 1.6–2.1 mm, while for FFD the maximum error was 1.9 mm with average values ranging from 

1.2 to 1.7. For GSI, the average error after registration was less than 1 mm per pixel in 9 out of 12 datasets, while only 

four datasets had average error less than 1 mm for GI and FFD. Average Err for all datasets is shown in Fig. 2. The 

minimum and maximum errors were the least for GSI. After registration WC and Err decrease while NMI increases.  

 

    The calculation of Err was based on contours drawn manually by six clinical experts. The value of μ manual (see 

Section III-E) was 0.6. The small value of μ manual is a reflection of the consistency of the manually drawn contours. 

Greater consistency is observed between the manual contours for frames after contrast enhancement. From Table I, we 

observe that the improvement in Err between Int and all other methods is quite high. This clearly indicates the 

advantages of saliency and gradient information over intensity. The improvement in Err between GI and GSI is greater 

than           μ manual. This indicates a significant improvement in performance due to GSI and makes the combination 

of saliency and gradient information a useful metric. FFD’s performance is similar to that of GI. 

 

B. Effect of Saliency-Based Narrow Band Graph Cuts 

 

   We conduct a simple experiment to assess the effect of SNBGC on registration accuracy and speed. Elastic 

deformations on cardiac images were simulated using FFDs and then registered using our saliency-based method. In 

one set of experiments, we used a normal graph cut approach with different stages of coarse and fine optimization. In 

another set of experiments we used our SNBGC for coarse and fine optimization. Experiments on 20 images, with each 

having a different simulated deformation field, show that while the average error from conventional graph cuts (0.8 ± 

0.2 mm) was almost the same as SNBGC (0.8 ± 0.3 mm), the computation times were significantly different (25.4 s for 
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graph cuts and 4.1 s for SNBGC). Although the increase in average registration error for SNBGC is very less, the 

remarkable reduction in computation time definitely highlights the role of saliency in speeding up registration by 

identifying important pixels. 

 

V. CONCLUSION 

  

    We have presented an MRF framework that combines saliency and gradient information for non rigid registration of 

contrast enhanced cardiac and liver images. Saliency was used in an attempt to imitate the working of the HVS which 

has a remarkable ability to match images in the presence of noise and contrast enhancement. We propose a modified 

saliency model based on neurobiological studies that are able to capture local changes in an image. This makes it 

suitable for elastic registration where matching local information is crucial. This model is different from the original 

model proposed in [19] that gave a global saliency map. Experimental results show that a combination of saliency and 

gradient information outperforms three other similarity metrics based on intensity, saliency, and gradient information. 

Although saliency provides highly similar maps for a pair of contrast enhanced images, its robustness can be further 

improved when used as a similarity measure. On the other hand, gradient information can be influenced by noisy 

datasets and does not accurately register the boundary of the LV in cardiac images. A combination of saliency and 

gradient information overcomes their individual limitations resulting in good registration performance. A saliency-

based narrow band graph cut method was used to speed up the registration process. Saliency information was used to 

identify pixels undergoing deformations and reduce the number of graph nodes.  Compared to conventional graph cuts, 

SNBGC showed a significant reduction in computation time and similar registration error. Experiments were conducted 

on real patient datasets showing elastic deformations. Compared to using only intensity, saliency and gradient 

information, a combination of saliency and gradient information shows considerable improvement in registration 

accuracy in terms of average registration errors.  
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