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ABSTRACT: EMG signals have a significant role in many biomedical and clinical applications like control of 
prosthetic devices and powered exoskeletons, biomedical movement analysis, etc. This paper aims in developing an 
accurate model which relates surface EMG (sEMG) signals acquired from the biceps and triceps muscle with the 
Angular Velocity of fore-arm. The main difficulty that arises while modelingsEMG -Angular Velocity signals is its 
black-box nature. For solving this problem a nonlinear system identification techniques based on Artificial Neural 
Network (ANN) is used. Finally the performance of “sEMG – Angular Velocity” model developed using ANN will be 
compared with models obtained by using system identification parametric models like ARX (linear) and Hammerstein 
model (nonlinear). The models are developed and compared by using the software LabVIEW. 
 
KEYWORDS:System Identification; EMG; Artificial Neural Network; Back propagation; ARX model; Hammerstein 
model. 

I.INTRODUCTION 

The electrical signals (electrical activities) produced by skeletal muscles during contraction or relaxation are known 
as Electromyogram (EMG) signals. Its analysis helps to detect the human intention for movement. Some of the major 
applications of EMG signals in biomedical and clinical fields are: - used as control of prosthetic devices (prosthetic 
hands, arms, lower limbs, etc.) and exoskeletons for disabled or elderly people, for theanalysis biomedical movements, 
study of neuromuscular diseases, etc. EMG signals can be acquired by using two methods: (1) Intramuscular EMG [1] 
(invasive method), it involves insertion of fine wire or needle type electrode through the skin into the muscle and (2) 
Surface EMG (non-invasive method), which involves placement of surface electrode on the skin over the muscle. 
Intramuscular method has many advantages: - is extremely sensitive, has deep musculature, has less cross-talk, etc. But 
in this paper surface EMG method is considered as it is safe, easy to handle and does not require medical attention. 

The black-box nature of sEMG signal models are the main difficult that arises while modeling it i.e. only input and 
output will be available or measurable, while the model parameters will be unknown or uncertain. The method used for 
solving this problem is Black-Box System Identification. In recent years, a number of models relating EMG signal has 
been developed for describing different human body moving parts like fingers,ankle [2], upper and lower arm, etc. In the 
study of arm movement, in most of the papers both biceps and triceps muscles were used for describing Flexion and 
Extension movements of arm. In most of the previous studies, model that relates EMG signals with either the 
corresponding forces acting (EMG-Force model) or with the torque (EMG-Torque model)[3, 4] were developed with a 
study condition of constant posture based on MVC (Maximum Voluntary Contraction) [3].In paper [2], a model 
relatingEMG acquired along GS (Gastrocnemius Soleus) muscles with angular velocity of ankle were developed. The 
system identification models used for developing EMG signal models in earlier works were linear parametric models [5] 
(like AR, ARX, Output Error, etc.). In recent years, nonlinear parametric system identification models like Hammerstein 
model, Wiener model [3], etc. and there modified forms like Hammerstein model with cubic spline nonlinearity [2], 
subspace Hammerstein identification [6], PCI (Parallel Cascade Identification) [7], etc. are used for obtaining the more 
accurate EMG models when compared to the linear models. 

This work contains of 3 stages: (1) sEMG and angular velocity signal acquisition, (2) signal processing and (3) 
“sEMG-Angular Velocity” model development (System Identification). The sEMG- angular velocity signal acquisition 
stage and signal processing stage are discussed in Section II. The “sEMG-Angular Velocity” model development 
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usingby nonlinear Artificial Neural Network (ANN) model and also by using parametric models like ARX model 
(linear) and Hammerstein model (nonlinear) are explained in section III.Finally the performance “sEMG-Angular 
Velocity” model based on ANN model, Hammerstein model and ANN model for are compared, which is discussed in 
section IV. 

II.SIGNAL ACQUISITION AND PROCESSING 

A.Experimental Details 
Three subjects (two male and one female) with age group between 22 & 25 years are used in this work for acquiring 

the sEMG - angular velocity signals with a sampling frequency of 1000Hz.Two arm movements considered in this 
paper for signal acquisition are: Flexion and Extension. The four study conditions considered in this paper based on 
different speeds of arm movement are: Fast Flexion, Fast Extension, Slow Flexion and Slow Extension. From each 
subjects 5 sEMG - angular velocity signals are acquired for each study conditions. Thus for each study conditions there 
are 15 signals. The time duration of each signal is 7 seconds (i.e. 7000 samples). 

B. Signal Acquisition 
Signal Acquisition stage block diagram is shown in Fig.1. In Fig.1 it can be seen that two surface electrodes 

(detection) are connected on the biceps and triceps muscles and one surface electrode (reference) can be connected to 
any bony area (here it is elbow). Pre-gelled Ag-AgCl electrodes are the surface electrodes used in this work. A 
biomedical acquisition device called BITalino is used for acquiring sEMG signals. A 3-axis accelerometer: - ADXl335 
and a data acquisition device: - MyDAQ are used for acquiring fore-arm acceleration corresponding to each sEMG 
signals. 

 

Fig.1. Signal Acquisition 

C. Signal Processing 
The amplitude of raw sEMG signals acquired using BITalino are in “Bit”. At first it converted into voltage signal and 

then it is filtered by using (50-150) Hz 4th order Butterworth band pass filter [8]. The acceleration values acquired are in 
voltage form, which is to be converted to angular velocity in rad/s [9]. At first, the acceleration voltage signal is 
converted into acceleration signal in g-force. The g-force acceleration signal is then converted into angle signal in 
radians. The angular velocity signals in rad/s are obtained by taking the derivative of angle signal in radians. Finally for 
data reduction, the filtered sEMG signals and the angular velocity signals in rad/s are sub divided into 20 segments of 
350ms each and then the mean values of each segment are found out.  

III.SYSTEM IDENTIFICATION 

System identification is a method used for developing a mathematical model of a system using measured input-
output data. The block diagram representation of System Identification stage is shown in the Fig.2. In this work, sEMG 
signals and angular velocities are the observed input-output data and the aim is to develop “sEMG-Angular Velocity” 
model. The system identification technique contains 3 steps:  

i. Split data- Here input and output data acquired (shown as U(t) and Y(t) in Fig.2) are divided into two sets: 
Estimation data set [Ue(t) and Ye(t)] and Validation data set [Uv(t) and Yv(t)]. 

ii. Model Estimation- Using the estimation data set [Ue(t) and Ye(t)], a system model (M) is developed based on 
different identification models. 
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iii. Model Validation- In this step, the estimated model (M) is validated by using Validation data set [Uv(t) and 
Yv(t)]. Lesser the error difference between the model response [Ym(t)] and desired response [Yv(t)], better will 
be the accuracy and performance of the estimated model. 

 
Fig.2. Block diagram representation of System Identification  

In this work, out of 15 input-output signals acquired, 9 signals are used as estimation data set and remaining 6 
signals are used as validation data set.Each signals contains 20 segments (as discussed in section II C.) and thus 
combination of 15 signals will contain 300 segments:- out of which 180 segments will be used as estimation data set 
and remaining 120 as validation data set. A linear model: - ARX model and two nonlinear models: - Hammerstein 
model and Artificial Neural Network (ANN) model are the system identification models used in this paper for “sEMG-
Angular Velocity” model development. 

A. ARX Model 
Auto-regressive Exogenous Input (ARX) model is the simplest system identification linear model. SISO ARX 

model time domain equation, 
[ݐ]ݕ = −ܽଵݐ]ݕ − 1] −⋯− ܽ௡ೌݐ]ݕ − ݊௔] + ܾ଴ݐ]ݑ − ݀] +  ܾଵݐ]ݑ − 1− ݀] +⋯+ ܾ௡್షభݐ]ݑ − (݊௕ − 1) − ݀] +  [ݐ]݁

(1)                                            
wherea and b represents the unknown model coefficients of order ݊௔and ݊௕, d is the time delay and e[t] is the zero 
mean Gaussian white noise.  

Let’s defined ARX model denominator and numerator terms as: (ݍ)ܣ = 1 + ܽଵିݍଵ +⋯+ ܽ௡ೌݍ
ି௡ೌand (ݍ)ܤ =

ܾ଴ିݍௗ + ܾଵିݍଵିௗ +⋯+ ܾ௡್షభݍ
ି(௡್షభ)ିௗ, where q is the backward shift operator. The complete ARX model equation 

is given as: 
(ݐ)ݕ = ஻(௤)

஺(௤)
(ݐ)ݑ + ଵ

஺(௤)
 (2)(ݐ)݁

1) ARX Model Estimation-  
Optimum model order selection is the initial step in ARX model estimation. The method used in this work for 

selecting optimum model order is Akaike Information Criteria. 

ܥܫܣ = ܧ  ቂ1 + ଶ௉
ே
ቃ(3) 

whereܧ is the prediction error, ܲ is the no: of model parameters and ܰ is the no: of data samples. As per Akaike 
Information criterion, lower the value of AIC shown in equation (3)higher will be the quality and performance of the 
estimated model. The order ranges selected in this work are as follows: ݊௔&݊௕ (model denominator & numerator order) 
from 1 to 20 and d (time delay) from 0 to 10. The optimum order values obtained for ARX model is shown in the table1. 

TABLE1. Optimum order value for ARX model 
 ݊௔  ݊௕  d 

Fast Flexion 18 20 9 

Fast Extension 20 20 8 

Slow Flexion 18 20 7 

Slow Extension 20 20 9 
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Root Mean Square Error (RMSE) is a measure of square root of mean of square of error difference between model 
response and desired response of a system. 

ܧܵܯܴ = ට∑ (௒೘೔ି௒೏೔)మಿషభ
೔సబ

ே
(4) 

where ௠ܻ೔ is the model response and ௗܻ೔ is the desired response. RMSE values obtained for the estimated ARX model 
when estimation data set is provided for different study condition are discussed in Table3. 

2) ARX Model Validation- 
    RMSE values obtained for the estimated ARX model when validation data set is provided for different study condition 
are discussed in Table3. 

B. Hammerstein Model 

 
Fig.3. Hammerstein Model 

Fig.3. shows Hammerstein Model block diagram representation. The advantage of Hammerstein model when 
compared to a linear model is that it contains a static (memory less) nonlinear function (which is used to describe the 
nonlinearities present in the system) along with the dynamic linear function. In this work, polynomial nonlinearity is 
used as the static nonlinear function, which is given as: 
(ݐ)ݖ = (ݐ)ݑଵߙ + (ݐ)ଶݑଶߙ +⋯+ (ݐ)௠ݑ௠ߙ = ∑ ௠(ݐ)௞ݑ௞ߙ

௞ୀଵ                                   (5) 
whereߙ is the unknown polynomial nonlinear function coefficient with order m. 

The dynamic linear function transfer function is given as:      

஻(௤)
஺(௤)

=
௕బ௤ష೏ା௕భ௤షభష೏ା⋯ା௕೙್షభ௤

ష൫೙್షభ൯ష೏

ଵା௔భ௤షభା⋯ା௔೙ೌ௤
ష೙ೌ

(6) 

wherea and b are the unknown linear function coefficients with orders ݊௔and ݊௕ respectively. 

The complete Hammerstein model equation is given as: 

(ݐ)ݕ = ஻(௤)
஺(௤)

∑ (ݐ)௞ݑߙ + ௠(ݐ)ݒ
௞ୀଵ  (7) 

1) Hammerstein Model Estimation-  
The static nonlinear function used in this work is 2nd order polynomial function. ߚଵ=1 and ߚଵ=2 are the unknown 

polynomial function coefficient values obtained by trial and error method for all study conditions. Here also Akaike 
Information Criteria is used for selecting optimum order for dynamic linear function. The optimum order values 
obtained for Hammerstein model is shown in the table2. 

TABLE2. Optimum order value for linear dynamic function 
 ݊௔  ݊௕  d 

Fast Flexion 12 4 2 

Fast Extension 14 5 0 

Slow Flexion 15 5 0 

Slow Extension 19 10 8 

 
RMSE values obtained for the estimated Hammerstein model when estimation data set is provided for different study 

condition are discussed in Table3. 
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2) Hammerstein Model Validation- 
 RMSE values obtained for the estimated Hammerstein model when validation data set is provided for different study 

condition are discussed in Table3. 

C. Artificial Neural Network (ANN) Model 
The ANN structure used in this work is “Multi-layer feed forward” neural network (shown in Fig. 4), which 

contains one or more hidden layers between the input and output units. In this work, only one hidden layer is 
considered since increase in number of hidden layers can cause computational complexity of the network. 

 
Fig.4. Multi-layer feed forward neural network 

Here the nonlinear activation function (AF) used in hidden and output layer is “sigmoid function”, 

ܨܣ =  ଵ
ଵା௘షഁೡ

(8) 

wherev is the net input and ߚ is the steepness parameter (which taken as ‘1’ in this work). 

In Fig.4, ݔ(ܰ) = ,ଶݔ,ଵݔ) … , (ܰ)ݕ ,௡) is the n dimensional input vectorݔ = ,ଶݕ,ଵݕ) …  ௡)is the n dimensionalݕ,
output vector, ℎ(ܰ) = (ℎଵ,, ℎଶ, … , ℎ௠  )is the hidden layer output (where m is the no: of hidden neurons and N is the no: 
of iterations), ‘ݔ଴ = ℎ଴ = +1’ are the bias value provided to the hidden and output layer,  ݓ௝௜(ଵ) is the weight matrix 
between input and hidden layer with bias weights [order- ‘m ×(n+1)’ ] and ݓ௞௝

(ଶ) is the weight matrix between hidden 
and output layer with bias weights [order- ‘n×(m+1)’ ]. Let ‘݀(ܰ) = (݀ଵ,݀ଶ, … , ݀௡)’ be the known desired (target) 
output vector. 

1) Back Propagation 
The training algorithm used in this work for adjusting the synaptic weights (ݓ௝௜(ଵ) ܽ݊݀ ݓ௞௝

(ଶ))  is “Back 
Propagation”, which is the most widely used supervised learning algorithm of an ANN. The back propagation 
algorithm consists of four stages: 
i. Initialization of synaptic weights by some random numbers between -1 and +1. 

ii. Feed forward - The feed forward stage can be seen in Fig.4. Here each input neuron transmits the input signal (ݔ௜) 
to each hidden neuron. Then these hidden neurons will calculate the activation function and transmits their output 
signal (ℎ௝) as input to each output neuron. The output neurons will further calculate the activation function to get 
the response (ݕ௞) for the given input samples. 
       Hidden layer net input, ݒ௛௝ = ∑ ௝௜(ଵ).௡ݓ

௜ୀ଴  ௜ (9)ݔ

       Hidden layer response, ℎ௝ = ݂൫ݒ௛௝൯ = 1
1+௘షߚೡ೓ೕ

(10) 

       Output layer net input, ݒ௢௞ = ∑ ௞௝ݓ
(ଶ).௠

௝ୀ଴ ℎ௝(11) 

       Output layer response, ݕ௞ = (௢௞ݒ)݂ = 1
1+௘షߚೡ೚ೖ

(12) 

iii. Back Propagation of Error - In this stage, each output neuron response is compared with the desired response and 
this is done for calculating error information factor (or local gradient ߜ). 

     Output layer local gradient, ߜ௞ = −௞(1ݕ ௞)(݀௞ݕ −  ௞)(13)ݕ
    Hidden layer local gradient,ߜ௝ = ℎ௝(1 − ℎ௝)∑ ௞௝௡ݓ௞ߜ

௞ୀଵ (14) 
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iv. Updation of synaptic weights - Here the synaptic weights are updated using the factor ‘ߜ’. Weight adjustment term 
for: Output layer, Δݓ௞௝ =  ௞ℎ௝ (15)ߜߙ 
∴ (ݓ݁݊)௞௝ݓ = (ݓ݁݊)௞௝ݓ + Δݓ௞௝(16) 

Hidden layer, Δݓ௝௜ =  ௜(17)ݔ௝ߜߙ
∴ (ݓ݁݊)௝௜ݓ = (ݓ݁݊)௝௜ݓ + Δݓ௝௜ (18) 

2) ANN Model Estimation 
For ANN model estimation, there will be 180 input samples [ܷ݁] and180 output samples [Ye]. Here the no: of 

hidden neurons is chosen as 10. Thus the weight matrix ݓ௝௜(ଵ) is of order ‘10×181’ and ݓ௞௝
(ଶ) is of order ‘180×11’. 

The no: of iterations for weight updation is taken as 1000.RMSE values obtained for the estimated ANN model when 
estimation data set is provided for different study condition are discussed in Table3. 

3) ANN Model Validation 
For ANN model validation, there are 120 input samples [ܷݒ] and 120 output samples [ܻݒ]. The no: of hidden 

neurons is chosen as 10. Here the weight matrix ݓ௝௜(ଵ) is of order ‘10×121’ and ݓ௞௝
(ଶ) is of order ‘120×11’.RMSE 

values obtained for the estimated ANN model when validation data set is providedfor different study condition are 
discussed in Table3. 

IV.RESULTS 
The performance of “sEMG-Angular Velocity” models based on ANN model, Hammerstein model and ARX model 

for different study conditions (Fast flexion, fast extension, slow flexion and slow extension) are compared in this section. 

Case 1: Fast Flexion  

 
Fig.3 Model response for Fast Flexion condition. 
Fig.3a: Estimation Part & Fig.3b: Validation Part. 

ANN model, Hammerstein model and ARX model response for Fast Flexion are shown in Fig.3. Fig.3a shows the 
model response of Estimation Part i.e. when estimation input set is given to it and Fig.3b shows the model response of 
Validation Part i.e. when validation input set is given to it. In Fig.3 the desired response (i.e., observed angular velocity 
values) represented as white signal; ANN model response as red signal, Hammerstein model response as green signal 
and ARX model response as red signal. 

Case 2: Fast Extension 

ANN model, Hammerstein model and ARX model response for Fast Extension are shown in Fig.4, where Fig.4a 
shows the model response of Estimation Part and Fig.4b shows the model response of Validation Part. Here in Fig.4 the 
desired response represented as white signal; ANN model response as red signal, Hammerstein model response as green 
signal and ARX model response as red signal.  
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Fig.4. Model response for Fast Extension. 

Fig.4a: Estimation Part &Fig.4b: Validation Part. 

Case 3: Slow Flexion 

 
Fig.5. Model response for Slow Flexion. 

Fig.5a: Estimation Part&Fig.5b: Validation Part. 
 
      ANN model, Hammerstein model and ARX model response for Slow Flexion are shown in Fig.5. Here the desired 
response (i.e., observed angular velocity values) represented as white signal; ANN model response as red signal, 
Hammerstein response as green signal and ARX response as red signal.  

Case 4: Slow Extension 

 
Fig.6. Model response for Slow Extension. 

Fig.6a: Estimation Part &Fig.6b: Validation Part. 

ANN model, Hammerstein model and ARX model response for Slow Extension are shown in Fig.6. 

In all the four cases, it can be seen that Artificial Neural Network model response tracks the desired response much 
better when compared to the Hammerstein and ARX model response. 

The root mean square error (RMSE) values (ie error difference between model response and desired system 
response) obtained for “sEMG-Angular Velocity” models based on ANN model, Hammerstein model and ARX model 
for different study conditions are shown in the table3. 
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TABLE3. Comparison between performance of ANN, Hammerstein and ARX models 
 

“sEMG-Angular Velocity” 
Model 

 

ARX 
Model 

Hammerstein 
Model 

ANN 
Model 

Study 
Conditions 

Root Mean 
Square Error 

Fast 
Flexion 

Estimation 0.09655 0.09139 0.00804 

Validation 0.15282 0.13970 0.12207 

Fast 
Extension 

Estimation 0.11552 0.09505 0.01197 

Validation 0.15139 0.14149 0.13408 

Slow 
Flexion 

Estimation 0.117059 0.09797 0.00945 

Validation 0.141825 0.11436 0.08554 

Slow 
Extension 

Estimation 0.12369 0.08685 0.01522 

Validation 0.2243 0.1903 0.12791 

The table3 results shows that for all the four study conditions, the root mean square error (RMSE) values of both the 
nonlinear models are less when compared to the linear ARX model. While on comparing both the nonlinear models 
with each other, it can be seen that ANN model has better performance than that of Hammerstein model, since RMSE 
value of ANN model is less when compared to Hammerstein model. 

V. CONCLUSION 

In this paper, a mathematical model that relates sEMG signals obtained from biceps and triceps muscles with the 
corresponding angular velocity of motion of fore-arm are developed using three system identification techniques: ARX 
model, Hammerstein model and ANN model. From the simulation results (shown in Fig. 3, 4, 5 & 6) and the table3 
results (RMSE values) it is proven that “sEMG-Angular Velocity” model based on Artificial Neural Network (ANN) is 
better when compared to the conventional parametric system identification models like Hammerstein and ARX. 
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