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ABSTRACT: The Finite Element Method (FEM) introduced by engineers in late 50's and 60's is a numerical technique for 

solving problems which are described by Ordinary Differential Equations (ODE) /Partial Differential Equations (PDE) with 

appropriate boundary/initial conditions or to solve problems that can be formulated as a functional minimization. FEM 

provides greater flexibility to model complex geometries. It can handle general boundary conditions and variable material 

properties. It has a solid theoretical foundation which gives added reliability and makes it possible to mathematically 

analyze and estimate the error in the approximate solution. This paper gives an introduction and methodology to solve a 

PDE using FEM in 1D and 2D in the simplest way possible such that the young researchers who has less mathematical or 

engineering background can also understand this technique. Only Poisson equation is solved in this paper.  The result of the 

solution the PDE‟s is also shown computationally using the open source software of FEniCS. 
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I.INTRODUCTION 

 

Equations like Laplace, Poisson, Navier-stokes appear in various fields like electrostatics, boundary layer theory, aircraft 

structures etc. So with solutions of such equations, we can model our problems and solve them. To solve such PDE‟s with 

FEM some prerequisites are required. Every PDE has strong form and weak form. The strong form of PDE, implies that the 

relationship must be satisfy at every mathematical point in the domain. Solving the strong form is not always efficient and 

may not give smooth solutions for a particular problem. Although it may give the accurate result but obtaining the solution 

is a difficult task. This is true especially in case of complex domains and/or different material interfaces etc. Moreover, 

incorporating boundary conditions is not so easy.  

 

In order to overcome the above difficulties, weak formulations are preferred. They reduce the continuity requirements on 

the approximation and allow to construct basis or trial functions which are mostly simple polynomials (generally taken as 

Lagrange polynomial). Weak forms never give accurate solutions because of the reduction in the requirements of 

smoothness and weak imposition of boundary conditions. But obtaining the solution becomes an easy task. After that error 

minimization can be done to remove the inaccuracies obtained in the weak form results. 

 

Improving the accuracy of a solution in weak formulations depend upon the type of problem you are solving. In some 

cases, for example elliptic problems, only mesh refinement is good enough and but when weak formulations are applied to 

Stokes and Navier-Stoke flows, one needs to use efficient stabilization techniques, along with mesh refinement, to get 

accurate results. The accuracy can also be improved by using higher-order basis functions. The whole idea of FEM revolves 

around choosing the appropriate trial or basis functions. A basis function is an element of a particular basis for a 

functionspace. Every continuous function in thefunction space can be represented asalinear combination of basis functions, 

just as every vector in a vector space can be represented as a linear combination of basis vectors.  

 

This paper includes functions in L
2
(I) which are known as square-integrable function. It is a real orcomplex-valued 

measurable function for which the integral of the square of the absolute value is finite.

Thus, if 
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Then ƒ is square integrable on the real line .  

The major part of FEM includes the Galerkin idea. Galerkin methods are a class of methods for converting a continuous 

operator problem (such as a differential equation) to a discrete problem. In this method, we choose trial functions or basis 

functions фi(x), where 1≤ i ≤N and then we choose test functions (an infinitely differentiable function) vi(x), where 1≤ i ≤N; 

N = 0, 1, 2, 3……. Very often vi(x) = фi(x). Thousands of function can be chosen with today‟s computing power which was 

not possible earlier. But the functions should be simple polynomials. 

 

II.LITERATURE SURVEY 

 

The Finite Element Method is one of the most important techniques in development of computation methods. It has evolved 

from solving structural engineering problems to almost every domain in science and technology. FEM algorithms are 

implemented in Finite Element Analysis and engineering problems are solved using softwares like ANSYS, SAMCEF etc. 

To analyze frame structures, two classical beam theory are used, namely, Euler-Bernoulli theory and Timoshenko beam 

theory. The formulation of element stiffness and mass matrices using these two theories is based on FEM. Current research 

is done in the field of finite element shell analysis. For large structural problems, the structure is divided into many parts 

and local matrices are being developed for each substructure. The local matrices are then combined to get a global matrix of 

the system and then error minimization is done. The same methodology is followed in this paper to solve the Poisson 

Equation. 

 

III.SOLUTION OF TWO POINT BOUNDARY VALUE 1D PROBLEM USING FEM 

 

STEP 1: The Poisson problem given is:  

 ∆u = f; where f =1 with the boundary conditions given as u(1)= 0   ……………………………………………. (3.1) 

The „u‟ in above equation is the unknown that we have to find. „f(x, y)‟ is the prescribed function and „v‟ is the test 

functions or the virtual displacements. As the finite element idea is to choose some trial functions ф, our approximate term 

„u‟ will be a combination of these trial functions. Also we take фi‟s = vi‟s. 

 

STEP 2: Weak Formulation Method 

For a boundary value problem defined using an operator of order 2m, admissible space chosen as H
m
(Ω) along with all 

essential boundary conditions [1][4] i.e. boundary conditions involving derivatives of u of order <= m-1. In this case we 

choose the admissible space as V = H
1
0(I) [2][3]. So the boundary condition for the test function would be v(0) = v(1) =1. 

Now multiplying the test function „v‟ by equation 3.1, we get the weak form. 

 

Where a(u,v) =  𝑢′𝑣′𝑑𝑥
1

0
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑉 

              b(v)= 𝑣
1

0
 𝑑𝑥,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 𝜖 𝑉 

 

STEP 3: Galerkin Finite Element Problem 

Firstly let‟s create a finite dimensional sub space Vh of V. For any positive integer N+1, let I = {0 = x0< x1<….xN+1 = 1} be 

a partition of I into subintervals (finite elements) Ij = (xj, xj-1), 1 ≤ i ≤ N+1, with length h = xj – xj-1. The discrete solution 

will be sought in Vh defined by: 

Vh = {vh:  vh ϵ C
0
(I), vh ϵ P1(Ij), 1 ≤ i ≤ N+1, vh(0) = vh(1) = 0

(PG): Given f in L
2
(I), find u in V such that 

a(u, v) = b(v)  for all v ϵ V 
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 Vh is a subspace of V. 

 Vh is finite dimensional, since on each subinterval Ij, vh ϵ P1(Ij); i.e. we have 2(N+1) degrees of freedom. 

Continuity constraints at the nodal points x1 ,……, xN and boundary conditions vh(0) = vh(1) = 0 imply 

dim Vh = 2(N+1) – N = N. 

This is the simplest choice for Vh. However other choices are also possible. 

The Galerkin finite element problem (P
h
G) corresponding to (PG) can be defined as: 

 

STEP 4: Construction of the Basis Functions 
 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

The main job is to create the basis function which will be the main step for creating the Matlab code. We take a 5 node grid 

in 1D and create the piecewise linear elements as shown in the figure 1. Although quadratic, parabolic etc elements can also 

be chosen for increasing the accuracy of the obtained solution but the linear elements make the calculations simpler. For 

each element, we have a different basis function and test function. Please note that we take фi’s = vi’s i.e. trial function = 

test function respectively. The distance between the two nodes is ∆x.    

Now we define the basis function for our current problem as: 

Ф0 =  
1

∆𝑥
 in [0, 1] node and 0 otherwise 

ф1 = 
1

∆𝑥
 in [0, 1],  

−1

∆𝑥
 in [1, 2] and 0 otherwise 

ф2 = 
1

∆𝑥
 in [1, 2],  

−1

∆𝑥
 in [2, 3] and 0 otherwise 

ф3 = 
1

∆𝑥
 in [2, 3], 

−1

∆𝑥
 in [3, 4] and 0 otherwise 

(P
h

G): Given f in L
2
(I), find uh in Vh such that  

a(uh, vh) = b(vh) for all uh ϵ Vh i.e. 

 
1

0
uh‟ vh‟ dx =  

1

0
vh‟ dx  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑉 

                   {(x-xi-1)/(xi-xi-1)}  in [xi-1 ,xi] 

ф
i
h (xj) =    {(x-xi+1)/(xi-xi+1)} in [xi, xi+1] 

                    {0} otherwise 

 

Figure 1: Showing individual basis and test functions on the elements 
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ф4 = 
1

∆𝑥
 in [3, 4], 

−1

∆𝑥
 in [4, 5] and 0 otherwise 

Now as we know uh=  𝑢𝑁
𝑖=1 h (xi) ф

i
h (x) =  𝑢𝑁

𝑖=1 i ф
i
h (x) 

This implies that uh = u0 Ф0(x) + u1 ф1(x) +u2 ф2(x) +u3 ф3(x) + u4 ф4(x) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure 2 shows the typical combination of the basis function. At node 0, only ф0 is present, so maximum height is u0. 

At node 1, only ф1 is present, so the height is u1. Coefficients of ф have a physical meaning. They are displacements at the 

node. We just need to find 5 unknown фi‟s to get u‟s. Now in the weak form a(u, v) = b(v) i.e. 

 

 
1

0
uh‟ vh‟dx =  

1

0
vhi‟ dx𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 𝜖 𝑉, i = 0,1,2,3,4  ………………………………………. (3.2) 

uh‟ = u0 Ф0‟(x) + u1 ф1‟(x) + u2 ф2‟(x) u3 ф3‟(x) + u4 ф4‟(x) 

Now, let‟s find the RHS of the equation 3.2, 

 𝑣
1

0 h0 =  ф
1

0 0 = 
1

2
 * ∆x * 1 

Please note here that фi‟s = vi‟s and from figure 1, фh0 exist between the nodes [0, ∆x] and integration of фh0 element will 

be the area under the triangular element. Similarly,  

 𝑣
1

0 h1 =  ф
1

0 1 = 
1

2
 * ∆x * 2  

 𝑣
1

0 h2 =  ф
1

0 2 = 
1

2
 * ∆x * 2 

 𝑣
1

0 h3 =  ф
1

0 3 = 
1

2
 * ∆x * 2 

 𝑣
1

0 h4 =  ф
1

0 4 = 
1

2
 * ∆x * 2 

Now the derivatives of the above values can be substituted in equation 3.2 and „u‟ can be found. 

 

STEP 5: WRITING THE SOLUTION IN MATRIX FORM 

The matrix required is KU = F 

K = [(ф
i
h, ф

j
h )] 1 ≤ i,j ≤ N 

U = (Ui) 1 ≤ i ≤ N 

F = (b(ф
j
h)) 1 ≤ j ≤ N 

 

 

 

 

 

Figure 2: Showing combination of the basis function 
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IV.FINITE ELEMENT METHOD IN 2D 

 

FEM is actually used for solving 2D problems. If a problem is given in 1D with some boundary conditions, it could be 

integrated simply and boundary conditions can be imposed. But when a 2D problem is given, then FEM is required. This 

paper presents FEM in 1D, just to explain the methodology of FEM. Finite element method formulation in 2D would be 

same as in 1D. The only difference is, we have to make the mesh in a plane instead of making the elements in 1D. We can 

use linear, quadratic or cubic functions for constructing the mesh. 

The most important part of FEM is choosing the trial functions. We chose simple functions which are easy polynomials on 

each element. The elements chosen for 1D FEM were linear but in 2D we choose triangular elements. In 1D, when we were 

using linear elements, we had triangular basis function but in 2D we will have pyramidal basis function. At any node in the 

2D mesh, the pyramid function ф1 is 1 and zero at all the other points just like we do in hat functions (basis function in 1D). 

Figure 3: Domain taken for the 2D problem 

Figure 4: Domain chosen due to rotational symmetry 
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Let‟s see a Poisson problem in 2D. 

…………………………………………… (4.1) 

 
Let‟s take a circular domain to solve the problem. In the circular domain, we have to approximate the curved 

boundaries by straight lines. That would make our domain as a polygon. So draw the polygon with about eight sides 

and u=0 is true on the eight nodes. Now let‟s divide our domain into 8 triangles or M triangles for M sided polygon. 

Now we need to work only on one triangle. By rotational symmetry, we‟ll have the same results for all the triangles. So 

our domain becomes just one triangle. In that triangle, we have „u = 0‟ boundary condition at two nodes and on the 

edge of the triangles we have Neumann boundary condition, 
𝑑𝑢

𝑑𝑛
 = 0.  

Now the coordinates of the triangle given in figure 3 can be calculated. 

 

Now we create the mesh on the triangle. For that, we divide the center line of the triangle into N parts with distance 

between each part as „h‟.  Using these N points on the line, we form the mesh as shown in figure 4 and number the 

nodes and the triangles. 

 

Now if we can get the coordinates of the mesh points, we could put them in a code and solve the problem using FEM. 

If we use N = 4, then we would get 13 nodes and 14 triangles and we know the coordinates of every node. We can 

create a Matlab code for solving the problem using FEM. The code will be needing the list of the coordinates of the 

nodes (P) and the list of the triangles (T). The triangle tells us the threenode numbers and the list P gives us their 

positions. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

P = (0, 0), (h, 0), (2h, 0)………………… 

T = (1, 2, 6), (2, 7, 6)…………………. 

Now the Matlab code will create the stiffness matrix „K‟ and put in the boundary conditions i.e. u = 0 at node 3, 5, 9, 

which implies that at the whole edge, u = 0. After that, we can solve the matrix, KU = F. The code is creating „K‟ and 

„F‟ for us.  

This is how the mesh is created and the Matlab code works for us. Now for better accuracy, we could have chosen P2 

elements instead of P1 elements or we could have increased M i.e. number of triangles would have increased. 

u = u1ф1(x, y) + u2ф2(x, y) + …. unфn(x, y) 

 
-uxx – uyy = 4  

Boundary condition: u = 

0 
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Equation (4.1) is the strong form of our problem. Now for the weak form, we have to multiply it with a test function 

and integrate by parts. 

 
 
 

 

 

 

 

for all v(x,y) …….………..……………….. (4.2) 

 

Here we are throwing one derivate of x and y onto v. 

Now we have found out the weak form and we come to the finite element idea. Finite element idea is to choose the trial 

functions and write „u‟ as a linear combination of the trial functions. 

U = u1ф1(x, y) + u2ф2(x, y) + ………………… unфn(x, y) 

In our problem, we will have 13 nodes in the triangle, which is our domain. So we will have 13 trial or basis functions. 

We will also choose our test functions to be the same as the trial functions. Also we are working on 13 dimensions 

instead of infinite dimensions. For this finite element subspace or piecewise linear polynomial subspace, we plug the 

trial functions and the test functions in the weak form (equation 4.2). In this method, we find entries of K matrix one by 

one.  

 

The other method to do this is take the elements one by one. The element will have two trial functions and so we make 

2X2 local stiffness matrices. These local stiffness matrices are then combined to produce the global stiffness matrix 

„K‟. This is how the code will be executed in Matlab. 

In earlier example, we showed, how FEM 2D is executed in the computer using a Matlab code. Now let‟s see, how it is 

done theoretically. Let us take another problem to understand the concept. 

 

A.Problem 

 
 
……………………………………………………..….. (4.3) 

 

 

Here equation (4.3) is the strong form, ∆u = 
𝑑2𝑢

𝑑𝑥2 + 
𝑑2𝑢

𝑑𝑦2 and 
𝑑𝑢

𝑑𝑛
 is the normal derivative of „u‟ in the direction of the 

exterior normal to Γ. Now we have to define our admissible space in which our solution and the boundary conditions 

exist. For defining our admissible space, we multiply our strong form with a test function and integrate it by parts. Then 

we get the weak form as follows. 
 

Weak Form: 

 
 

 

 

 
 
 

From the weak form, we decide the admissible space we need, 

 
 
 

Now the Galerkin Variational Problem (PG) corresponding to PC will be 

 (
Ω

-uxx – uyy)*v(x,y) =  𝑓
Ω

(x,y)*v(x,y) dx dy 

  
𝑑𝑢

𝑑𝑥
∗

𝑑𝑣

𝑑𝑥
+

𝑑𝑢

𝑑𝑦
∗

𝑑𝑣

𝑑𝑦
 𝑑𝑥𝑑𝑦

𝐼
 = 𝑓 𝑥, 𝑦 ∗ 𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐼
 

 

 

(Pc): -∆u + u = f in Ω = (0, 1) X (0, 1) ⊂ R
2 

𝑑𝑢

𝑑𝑛
 = 0 over Γ, a square boundary of Ω. 

V = H
1
(Ω) = {v: v ϵ L

2
(Ω), 

𝑑𝑣

𝑑𝑥
, 
𝑑𝑣

𝑑𝑦
 ϵ L

2
(Ω) 

a(u, v) =   −∆𝑢 +  𝑢 𝑣 𝑑Ω
Ω

 =  (𝑢′𝑣 ′ + 𝑢𝑣)
Ω

𝑑Ω for all u, v ϵ V 

L(v) =  𝑓𝑣 𝑑Ω
Ω

 for all v ϵ V 
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Triangulation: 

Triangulation [5] means subdivision of the domain into closed quadrilaterals, rectangles, triangles etc denoted by

. So we do admissible triangulation „th‟ of closed domain Ω⊂ R
2
. 

 
Note that, if we have a curved domain then we approximate it with a polygon for simplicity. Now we introduce the 

mesh parameter, 

h = max (diam T) where (diam T) is the longest side of the element chosen i.e. triangle in this case and T ϵ  th. 

 

Finite dimensional subspace: 

To the triangulation th of Ω, we associate a finite dimensional linear space Vh of continuous piecewise polynomials of 

degree<= 1 in each triangle T of th, i.e., 

 

 
 
 

In this example dimension of Vh is N, where N is the number of the nodes in the triangulation. After defining the sub-

space Vh, our Galerkin finite element problem becomes 

 

 
 
 
 

 

Matrix Formulation: 
For making the stiffness matrix „K‟, we need to choose the appropriate trial functions or the basis functions {ф

i
h} 1<= 

i<=N for Vh. After finding the trial functions, we can find the approximate solution „uh‟ as, 

where ui‟s need to be determined.  

 
 

 

Please note that we take the test functions same as the trial functions, as we did earlier. As we did earlier, we have 

a(uh, vh) = L(vh) for all vh ϵ Vh 

a( 𝑢𝑁
𝑖=1 i ф

i
h, ф

j
h) = L(ф

j
h), 1<= i,j <=N 

Therefore, 

 𝑢𝑁
𝑖 i=1 a(ф

i
h, ф

j
h) = L(ф

j
h), 1<= i,j <=N 

 

 

 

 

 

 

 

(PG): Given f ϵ L
2
(Ω), find u ϵ V such that 

a(u, v) = L(v) for all v ϵ V 

 

Vh = {vh: vh ϵ C
0
(Ω), vh ϵ P1(T) for all T ϵ th 

 

(P
h
G): Given f ϵ L

2
(Ω), find uh ϵ Vh such that 

a(uh, vh) = L(vh) for all vh ϵ Vh 

 

uh =  𝑢𝑁
𝑖=1 i ф

i
h 

 

U = [u1, u2………….uN] 

 

K = [a(ф
i
h, ф

j
h)], 1<= i,j <=N 

 
F = L(ф

j
h), 1<= i,j <=N 
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Therefore we got the matrix KU = F where,is the global stiffness matrix K. is the global load vector. 

is the unknown vector. 

 

Construction of Basis Function: 

In this example, say we take the dimension of Vh as 5, i.e. we have 5 nodes in our domain as shown in the figure 5. We 

have approximated our curved circular boundary with a rectangle and divided into 4 triangles. Accuracy of our 

approximate solution uh will be very less with this domain. For less error, we should take a higher polygon and divide it 

into more triangles. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Circular domain chosen for the problem 

 

To each global node ai (1<= i <=N), we associate a pyramidal function „ф
i
h‟ as explained before. This pyramidal 

function has a unit height over the triangles containing the node ai and vanishes over the triangles not containing ai as 

one of their nodes. This implies, 

• ф
i
h(ai) = 1, ф

i
h (aj) = 0 for all i ≠ j. 

• Height of pyramidal function is 1 at ai.  

• ф
i
h ϵ P1(T) for all T ϵ th. 

For construction of the global basis function, we need to use barycentric coordinates for a triangle. We define a closed 

convex hull T by, 

T = {x: x ϵ R
2
, x =  𝜆3

𝑖=1 iai, 0<= 𝜆i <=1,  𝜆3
𝑖=1 i = 1} 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Where 𝜆i is the barycentric coordinates of any point x ϵ T and ai are the vertices of a particular triangle chosen. Now 

any point x, can be represented using the barycentric coordinates. 

Figure 7: Representation of Barycentric coordinates 

Figure 6: Representation of Barycentric Coordinates 
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x = 𝜆1a1 + 𝜆2a2 + 𝜆3a3 

In matrix form, above equation can be written as, 

 
i.e. 

x1 = 𝜆1a11 + 𝜆2a21 + 𝜆3a31 

x2 = 𝜆1a12 + 𝜆2a22 + 𝜆3a32 

𝜆1 + 𝜆2 + 𝜆3 = 1 

Please note that this calculation is done for only one triangle out of many in the domain. For each triangle, we have to 

find individual barycentric coordinates. Then all these barycentric coordinates will be used to find thepyramidal 

functions. Please refer figure 6 to understand the individual barycentric coordinates. 

 

So any point x ϵ T can be found using the barycentric coordinates. For any x, not belonging to T, representation of that 

point using the barycentric coordinates is not possible. Also barycentric coordinates can be found, if we know any x ϵ 

T, or barycentric coordinates can be written as a function of x and y in 2D. 

x = 𝜆1a11 + 𝜆2a21 + 𝜆3a31 

y = 𝜆1a12 + 𝜆2a22 + 𝜆3a32 

𝜆1 + 𝜆2 + 𝜆3 = 1 

Suppose we have a triangle in the domain with the coordinates, a1 = (1, 0), a2 = (0, 1), a3 = (0, 0), the barycentric 

coordinates obtained will be, 

𝜆1(x, y) = x  

𝜆2(x, y) = y 

𝜆3(x, y) = 1-x-y 

The barycentric co-ordinates in triangles will be used now to define global basis functions {ф
i
h} 1<= i <=N for Vh. 

Consider the example we are taking and refer figure 6. 

Ф
1
h = 𝜆1 in triangle T1 

𝜆2 in T4 

           0 otherwise 

Ф
2
h = 𝜆1 in T2 

𝜆2 in T1 

          0 otherwise 

Ф
3
h = 𝜆2 in T2 

𝜆1 in T3 

          0 otherwise 

Ф
4
h = 𝜆2 in T3 

𝜆1 in T4 

          0 otherwise 

Ф
5
h = 𝜆3 in T1, T2, T3, T4 

          0 otherwise 

 

These are the pyramidal functions. We will put the values of barycentric coordinates that we found earlier. Now since 

we have 5 basis functions, we‟ll get a 5X5 stiffness matrix. Now we know, 

K = [a(ф
i
h, ф

j
h)], 1<= i,j <=N 

 

 
 

During implementation, we first compute the element stiffness matrices and the element load vectors (here element 

refers to a triangle in the domain). Then we assemble the element matrices to obtain the global stiffness matrix and the 

global load vector. 
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V.RESULT AND DISCUSSION 

 

For the same problem of Poisson equation, solution has been computed with FEniCS [6],  

 for Dirichlet boundary condition shown in figure 7. 

 for Dirichlet and Neumann boundary condition shown in figure 8.  

 
 
 
 

 
 

Figure 7: Solution for problem with Dirichlet boundary condition 

 

 

 

 

 

 

 

Where 

 Ω = [0, 1] X [0, 1] (a unit square) 

ΓD = {(0, y) ∪ (1, y) ⊂ dΩ} (Dirichlet boundary condition) 

ΓN = {(x, 0) ∪ (x, 1) ⊂ dΩ} (Neumann boundary condition) 

g = sin(2x) (normal derivative) 

f = 10x
2
 + 3y

3
 (source term) 

 

 
 

Figure 8: Solution for problem with Dirichlet and Neumann boundary condition 

 

-∆u = f in Ω with boundary condition  

u = u0 in dΩ 

∆u = f in Ω 

u = 0 on ΓD 

u‟.n = g on ΓN 
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For working with FEniCS, knowledge of python coding is required. Figure 7 and 8 shows the value of „u‟ at various 

points in the domain. For obtaining the solution at a particular line or point in the domain, we can use the software‟s 

like „ParaView‟ and „Visit‟. PDE computation can also be done by various other softwares like Freefem++ etc. 

 

VI.CONCLUSION 
 

This paper presents the basic understanding of Finite Element Method and the methodology to solve any problem of 

differential equation. The main idea of Finite Element Method is to choose the appropriate basis functions and then 

expressing the unknown as combination of the basis functions. Finally a stiffness matrix is generated and solution is 

obtained. The accuracy of solution increases by using higher order polynomials for the basis function but the 

calculations become difficult and hence the computation time also increases. Finite Element Method can be executed 

computationally on Matlab, FEniCS, FreeFem++ etc. 

 

ACKNOWLEDGEMENT 

 

The author is grateful to Prof. Mythily Ramaswamy, Tata Institute of Fundamental Research Centre for Applied 

Mathematics, Prof. Neela Nataraj, IIT Bombay and Post Doc Saumya Bajpai, for providing continuous support and 

guidance in understanding of Finite Element Method. 

 

REFERENCES 

 
1. Mark S. Gockenbach, “Understanding and implementing the Finite Element Method”, pp. 29-31, 2006 

2. Mark S. Gockenbach, “Understanding and implementing the Finite Element Method”, pp. 39, 2006 

3. Bertrand Mercier, “Lectures on Topics in Finite Element Solution of Elliptical Problems”, Tata Institute of Fundamental Research Bombay, pp. 
1-8, 1979 

4. Bertrand Mercier, “Lectures on Topics in Finite Element Solution of Elliptical Problems”, Tata Institute of Fundamental Research Bombay, pp. 

11-18, 1979 
5. Neela Nataraj, “Introduction to Finite Element Method Lecture”, Department of Mathematics, Indian Institute of Technology Bombay 

6. Anders Logg and Garth N. Wells, “Lecture Notes in Computational Science and Engineering”, The FEniCS book  

 

 

http://www.ijareeie.com/

