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ABSTRACT: Speech interface to computer is the next big step that the technology needs to take for general users. 
Automatic speech recognition (ASR) will play an important role in taking technology to the people. There are 
numerous applications of speech recognition such as direct voice input in aircraft, data entry, speech-to-text processing, 
voice user interfaces such as voice dialling. ASR system can be divided into two different parts, namely feature 
extraction and feature recognition. In this paper we present MATLAB based feature recognition using back-
propagation neural network for ASR. The objective of this research is to explore how neural networks can be employed 
to recognize isolated-word speech as an alternative to the traditional methodologies. The general techniques developed 
here can be further extended to other applications such as sonar target recognition, missile tracking and classification of 
underwater acoustic signals. Back-propagation neural network algorithm uses input training samples and their 
respective desired output values to learn to recognize specific patterns, by modifying the activation values of its nodes 
and weights of the links connecting its nodes. Such a trained network is later used for feature recognition in ASR 
systems. 
  
KEYWORDS: Automatic Speech Recognition, Artificial Neural Networks, Pattern Recognition, Back-propagation 
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I.INTRODUCTION 
 

Speech recognition is fundamentally a pattern recognition problem. Speech recognition involves extracting features 
from the input signal and classifying them to classes using pattern matching model. Performance of ASR system is 
measured on the basis of recognition accuracy, complexity and robustness. The deviation of operating conditions from 
those assumed during training phase may result in degradation of performance [1]. 
 
The primary objective of this research is to explore how a back-propagation neural network can be applied to isolated 
word speech recognition. The main benefit of this work would be its contribution towards employing the neural 
network-based techniques for solving common but difficult problem of pattern recognition, particularly in ASR. There 
are three major types of pattern recognition techniques namely dynamic time warping (DTW), Hidden Markov model 
(HMM) and artificial neural networks (ANN) [1], [5]. 
 
This paper is organized as follows. Section II describes the automatic speech recognition, with a special emphasis on 
feature extraction. Section III describes artificial neural networks and some algorithms using neurons as their primary 
elements. Section IV discusses the structure and characteristics of back propagation neural networks. Section V 
discusses pattern recognition using back propagation neural networks. Finally, section VI concludes the paper. 

II.AUTOMATIC SPEECH RECOGNITION 
 

Acoustic pattern recognition determines a reference model which best matches the input speech, as an output. Acoustic 
modelling, naturally posed as a static pattern matching problem is amenable to neural networks. Many ASR systems in 
existence employ DTW or HMM for feature recognition. DTW method measures the distance between each reference 
frame and each input frame using the dynamic algorithm to obtain the best warping of the pattern. HMMs characterize 
speech signals using a pre-trained Markov chain. But, some difficulties still exist in such ASR systems, since speech 
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recognition is a complex phenomenon due to the asymmetries involved in speech production and speech interpretation. 
For effective results, ASR can employ an approach that is closer to human perception. Neural networks are modelled 
after the human brain. Hence, we use neural network for feature recognition in our ASR system [1], [2]. 
 
In our ASR implementation, the speech waveform, sampled at 8 kHz is used as an input to the feature extraction 
module. Software ‘Audacity’ is used to record the input speech database. Speech files are recorded in ‘wave’ format, 
with the following specifications: Fs = Sample rate in Hertz = 8000 and number of bits per sample = 16. We use the 
Mel-frequency Cepstral Coefficients (MFCC) for feature extraction. The efficiency of this phase is important for the 
next phase since it affects the behaviour of modelling process. 

 
Fig. 1: Block diagram of an Automatic Speech Recognition System 

 
Figure 1 shows the block diagram of an automatic speech recognition system using MFCC for feature extraction and 
neural network for feature recognition. 

III.ARTIFICIAL NEURAL NETWORKS 
 

Many tasks involving intelligence or pattern recognition are extremely difficult to automate, but appear to be performed 
very easily by human beings. Human beings recognize various objects, apparently with very little effort. The neural 
network of human beings contains a large number of interconnected neurons. Artificial neural networks are the 
computing systems whose theme is borrowed from the analogy of biological neural networks [2], [4]. 
Neural network is a useful tool for various applications which require extensive classification. The advantage of 
parallel processing in neural networks and their ability to classify the data based on features provides a promising 
platform for pattern recognition. Traditional sequential processing techniques have limitations for implementing pattern 
recognition problems in terms of flexibility and cost whereas neural networks perform the processing task by training 
instead of programming in a manner analogous to the way human brain learns. Unlike the traditional sequential 
machines where rules and formula need to be specified explicitly, a neural network learns its functionality by learning 
from the samples presented [3], [7]. 
 
(A) Characteristics of artificial neural networks 
Artificial neural networks have a labelled directed graph structure where nodes perform some computations. They 
consist of a set of nodes and a set of connections connecting pair of nodes. Each connection carries a signal from one 
node to another. Label represents the connection strength or weight indicating the extent to which signal is amplified or 
diminished by a connection. Different choices for the weights result in different functions being evaluated by the 
network. Weights of the network are initially random and a learning algorithm is used to obtain the values of the 
weights to achieve the desired task. A graph structure, with connection weights modifiable using a learning algorithm, 
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results in a network called artificial neural network. Neural network stores the knowledge specific to a problem in the 
weights of connections using learning algorithm [3], [7]. 
 
(B) Classification 
Classification means assignment of each object to a specific class or group. It is of fundamental importance in a number 
of areas ranging from image and speech recognition to the social sciences. We use a training set consisting of sample 
patterns representing all classes, along with class membership information for each pattern. Using the training set, rules 
for membership in each class are deduced to create a classifier, which later assigns other patterns to their respective 
classes according to these rules. We use neural networks to classify samples, i.e., map input patterns to different 
classes. Each output node can stand for one class. An input pattern is determined to belong to class i if the ith output 
node computes a higher value than all other output nodes when that input pattern is fed into the network [3], [4]. 
 
(C) Perceptrons and Linear separability 
Perceptron is a machine that learns using examples i.e. training samples to assign input vectors to different classes. 
Perceptron uses a linear function of inputs. Perceptron has a single output whose value determines to which class each 
input pattern belongs and it is represented by a single node that applies a step function to the net weighted sum of its 
inputs. If there exists a line, whose equation is w0+w1x1+w2x2 = 0, that separates all samples of one class from the other 
class, then a perceptron, with weights w0, w1, w2 for the connections from inputs 1, x1, x2, respectively, can be derived 
from the equation of that line. Such classification problems are said to be linearly separable, since they are separable by 
a linear combination of inputs. The inter-relationship between perceptron weights and the coefficients of terms in the 
equations of lines holds true for the converse as well [3], [7]. 
 
(D) Limitations of using perceptrons 
If there are three input dimensions, a two class problem can be solved using a perceptron only if there is a plane that 
separates samples to different classes. For simple examples and two dimensional spaces it is relatively easy to 
determine by geometric construction whether two classes are linearly separable. But it becomes very difficult for higher 
dimensional spaces. If no line can separate samples belonging to two different classes i.e., the samples are not linearly 
separable, then a simple perceptron cannot classify the samples. It is the fundamental limitation of simple perceptron. 
Real life classification problems are linearly non-separable and hence perceptron training algorithm cannot achieve 
accurate results for such classification problems [3]. 
A robust algorithm would achieve a reasonable separation between most of the samples of the two classes. Two 
algorithms achieve robust classification for linearly non-separable classes - pocket algorithm and least mean square 
algorithm. The LMS algorithm minimizes the mean square error instead of the number of misclassified samples, while 
the pocket algorithm stores information about the better weight vectors observed in the process of modifying weights 
[3], [7]. 
 
(E) Pocket algorithm 
This algorithm identifies the weight vector with a longest unchanged run as the best solution among the weight vectors 
examined so far. The best solution explored so far and the length of unchanged run associated with the best solution is 
stored in pocket. The contents of the pocket are replaced whenever a new weight vector with a longer successful run is 
obtained [3], [7]. 
 
(F) Adalines 
Robust recognition may also be achieved by minimizing the mean square error (MSE) instead of the number of 
misclassifies samples. An adaptive linear element or adaline accomplishes classification by modifying weights in such 
a way as to minimize the MSE at every iteration training. This can be achieved using gradient descent, since MSE is a 
quadratic function whose derivative exists everywhere. When the sample input is presented during training the 
network, the linear weighted net input is computed and compared with the desired output for that sample, generating an 
error signal. This error signal is used to modify each weight in the adaline. Unlike the perceptron training algorithm, 
weight changes are made to reduce MSE even when a sample is correctly classified by the network [3], [7]. 
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(G) Supervised learning using multi-layer networks 
Perceptron approach can be extended to solve linearly non-separable classification problems, using layered structure of 
nodes. Such networks contain one or more layers of hidden nodes that isolate useful features of the input data. However 
it is not easy to train these networks. Given that the network makes an error on some sample inputs, identifying which 
weights in the network must be modified, and to what extent is a tough task. Hence, perceptron and other one layer 
networks are seriously limited in their capabilities. Feed-forward multilayer networks with non-linear node functions 
can overcome these limitations, and can be used for many applications. Hence a more powerful supervised learning 
mechanism called back-propagation is used for multi-class, multi-level discrimination [3], [5]. 

IV.BACK-PROPAGATION NETWORKS 

The term back propagation network is used to describe feed-forward neural networks trained using the back 
propagation learning method. The back propagation algorithm is the modification of least mean square algorithm. It 
modifies network weights to minimize the mean squared error between the actual and desired outputs of the network. 
Back propagation algorithm makes use of supervised learning in which the network is trained using training samples 
for which inputs as well as desired outputs are known. The weights are frozen once the network is trained and it can be 
used to compute output values for new input samples. The feed forward process involves presenting an input pattern to 
input layer nodes that pass the input values onto the first hidden layer. Each of the hidden layer nodes computes a 
weighted sum of its inputs and passes the sum through its activation function before presenting the result to the output 
layer. An error at a higher layer of multi-layer network is propagated backwards to nodes at lower layers of the 
network. The gradient of the backward-propagated error measures is then used to determine the desired weight 
modifications for connections leading into the hidden nodes. In short, weights are modified in a direction corresponding 
to the negative gradient of an error measure. [3], [7]. 
 
(A) Architecture of back propagation networks 
The back propagation algorithm assumes feed-forward neural network architecture. In this architecture nodes are 
partitioned into layers numbered 0 to L. Here the layer number indicates the distance of a node from the input nodes. 
The input layer numbered as layer 0 is the lowermost layer, and the output layer numbered as layer L is the topmost 
layer. We choose L as 2 i.e., we use a three-layer network. Nodes in the hidden layers neither directly receive inputs 
from nor send outputs to the external environment. An extra dummy node x0 with constant input equal to 1; is also used 
so that the threshold or bias term can be treated just like any other weight in the network. The number of nodes in the 
hidden layer depends on the problem complexity. Each output node and hidden node applies a sigmoid function to its 
net input. S-shaped sigmoid function is used because it is a monotonically increasing, continuous, invertible, and 
differentiable function [3], [7]. 
 
 (B) Objectives of back propagation networks 
We train the back-propagation network with supervised learning algorithm using a large number of input patterns, say 
P = 50. For each input vector xp, we have the corresponding desired output vector dp, of dimensions, say K. This 
collection of input output pairs constitute the training set {xp, dp}. The length of the input vector xp is equal to the 
number of features of the input pattern. The length of output vector dp is equal to the number of outputs of given 
application i.e. the number of classes, as decided by the given classification problem [3], [7]. 
The objective of training the network is to modify the weights so that the network’s output vector is as close as possible 
to the desired output vector, when a samples input vector is presented to the network. To achieve this objective, the 
cumulative error of the network needs to be minimized. The difference between the actual output and the desired output 
represented by error function Err should be non-negative [3], [7].  
Equation (1) represents the cumulative error of the neural network. 
퐸푟푟표푟 =  ∑ 퐸푟푟(o , d )          (1) 
An error measure is obtained by calculating the difference between the jth components of the actual and desired output 
vectors. It is given by equation (2). 
l , =  ǀo , − d , ǀ             (2) 
For the entire output, the error difference is obtained by equation (3). 
Err(o , d )  =   (l )            (3) 



 
    ISSN (Print)  : 2320 – 3765 
    ISSN (Online): 2278 – 8875 

 
International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 
(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 7, July 2014 
 

DOI: 10.15662/ijareeie.2014.0307016 

Copyright to IJAREEIE                                                                   www.ijareeie.com                                                                   10502          

The sum square error is given by equation (4). 
푆푢푚 푠푞푢푎푟푒 푒푟푟표푟 = ∑ ∑ (l , )              (4) 
Equation (5) represents mean square error. 
푀푆퐸 = ∑ ∑ (l , )               (5) 
Our aim is to find a set of weights that minimize the sum square error or the mean square error. 
 

V. PATTERN RECOGNITION USING BACK-PROPAGATION NEURAL NETWORK ON MATLAB 

We implemented back-propagation network on MATLAB. The inputs to our implementation are - the input training 
samples and desired outputs for the training samples, the learning rate, momentum for weight update, satisfactory mean 
square error, number of layers and the number of nodes in each layer as its inputs. This implementation results in a 
neural network architecture with final weights of all the links connecting the nodes; computed by minimizing the mean 
square error, for a given number of iterations of input training samples [3], [7]. 
 
(A) Inputs to the system 
A vector of integers denoted by L represents the number of the layers and number of nodes in each layer of our 
implementation. There are three types of layers – input layer, hidden layers and output layer. Our implementation has 
13 nodes in the input layer, as we are using MFCC algorithm for feature extraction which gives a feature vector of 
length 13. Also we are designing the ASR system for isolated word speech recognition of ten digits (0-9). So the output 
layer has 10 nodes. For every presentation of input sample of testing phase, only one output node will have a value of 
1, with all the remaining nodes’ outputs as 0. We choose the number of nodes in the hidden layer as 11. 
Our implementation has two matrices – X and D, as its input. Matrix X represents the training samples. It is a P-by-N 
matrix, where P equals the number of input training samples and N equals the length of feature vector for each training 
sample i.e., 13. Matrix D represents the desired output values for the corresponding input training vectors. It is a P-by-
K matrix, where P equals the number of input training samples and K equals the number of classes to which the 
samples are to be classified i.e., 10. We use 50 input samples i.e., 5 input samples per digit, for training the back-
propagation network. Hence, P is 50 in our implementation. 
The learning rate ή decides the weight-changes occurring in each iteration of the training. We choose learning rate as 
0.5. The momentum term in the weight update equation represents how much effect the current error value has on the 
weight-changes. We choose momentum as 0.2. The satisfactory mean square error value is the mean square error at 
which the computation terminates. 

(B) Outputs of the system 
We store weight vectors (w0, w1, w2…) in weight matrices. There is a weight matrix between each pair of adjacent 
layers. Initial weights are random. We randomize the weight matrices in the range [-0.5, 0.5]. Each layer, except the 
output layer has a bias node x0 whose activation is always one. There is a link from each node in layer i to the bias node 
in layer j (j > i). Weights of all links to the node x0 are assigned as 0. 
 
(C) Pre-allocation of matrices 
For faster computation, we pre-allocate ‘1’ to all the activation vectors (x1, x2, x3, x4….), net vectors (net = 
w1x1+w2x2+….) and ‘0’ to all the delta weight vectors (∆w). For delta vectors i.e. weight change vectors, two additional 
matrices representing the delta weights at previous iteration and the sum of delta weights for each presentation of 
sample input are needed. Both the matrices are P-by-K matrices i.e 50-by10 matrices. 
 
(D) Feed-forward phase 
The outputs i.e. the activation values for all the nodes in each layer are calculated, by applying sigmoid function to the 
‘net’ value obtained at each node. The actual output vectors obtained should match with the desired output vectors. 
Difference between the desired output and the obtained output is error. Error for all samples is calculated and then we 
compute the running total of the squared error, by adding the errors for all input samples. 
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(E) Back-propagation phase 
In this phase, backward error propagation of weight adjustment takes place for each sample input pattern. The ith node 
in the input layer holds a value for xp,i  for the pth

  input pattern. The net input to the jth node in the hidden layer is 
obtained as follows. 
net = ∑ w , x ,            (6) 
This includes the threshold value with xp,0 = 1; the connection from the ith input node to the jth hidden layer node is 
assigned a weight value wj,i. The output of the jth node in the hidden layer node is given by following equation. 
x , = ʃ ∑ w , x ,             (7) 
Here ʃ is a sigmoid function. The net input to the kth node of output layer is obtained as follows. 
net = ∑ w , x ,            (8) 
Including the threshold; the ‘w’ connection from the jth hidden layer node to the kth output layer node is assigned a 
weight value wk,i. Output of the kth node of the output layer is obtained as follows. 

o , = ʃ ∑ w , x ,             (9) 
Here ʃ is a sigmoid function. The desired output of the kth node of the output layer is dp,k and the corresponding error is 
given by the following equation. 
푙 , = 푑 , − 표 ,                       (10) 
The error for pattern p is given by, 
퐸 = ∑ 푙 ,                        (11) 
We need to obtain ‘w’, the vector consisting of all weights in the network, so that Ep is minimized. The expression to be 
minimized is, 
퐸 = ∑ 푙                                 (12) 
We minimize E using the gradient descent method. As ok depends on the network weights, E is also a function of the 
network weights. According to gradient descent, the direction of weight change of ‘w’ is in the same direction as (–δE/ 
δw). We calculate (–δE/ δw) for each connection from the hidden layer to the output layer and each connection from 
the input layer to the hidden layer. The connection weights are then changed by using the (–δE/ δw) values obtained 
[3], [7]. In brief, the following two equations describe the suggested weight changes: 
∆w , 훼 −δE δw ,⁄                       (13) 
And, 
∆w , 훼 − δE δw ,⁄                       (14) 
Both calculations use the same concept – the chain rule of derivatives [3], [7]. The weight changes at the output layer 
of weights can be summarized as: 
∆w , = 휂 × 훿 × 푥                       (15) 
Weight changes at inner layer of weights are, 
∆w , = 휂 × 휇 × 푥                       (16) 
Here, η is called as learning rate. Thus, similar equations determine the change in weights in both layers. 
µj or δk are obtained as follows: 
훿 = (푑 − 표 )ʃ(net )                      (17) 
휇 = ∑ 훿 × w , ʃ′(net )                     (18) 
The value of δk is proportional to the amount of error (dk - ok). The value of µj is proportional to the amount of weighted 
error as shown by the following equation. 
휇 훼 ∑ 훿 w ,                        (19) 
µj is proportional to the weighted error. Hence, the changes in the weights for the two layers are similar [3], [7]. 
 
(F) Termination criteria 
Training is continued until a satisfactory low error is achieved, or until the maximum number of iterations is exceeded. 
We are using per-epoch learning. An epoch consists of a presentation of the entire set of training samples i.e., 50 in our 
case. We choose 1000 epochs. Weight changes suggested by all the training samples are accumulated together into a 
single change to occur when the termination criteria is met. Thus weights are updated only after all samples are 
presented to the network [3]. 
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(G) Training the network 
Spoken digits were recorded as five samples per digit. Thus, total 50 different recordings were recorded. Then we 
calculated MFCC coefficients for all the input ‘wave’ files. We choose supervised learning and create target vectors i.e. 
desired output vectors for inputs. Thus, there are 50 target vectors. The network is trained using both feed-forward 
phase and back-propagation phase until the termination criteria is met [6]. 
 
(H) Results 
We use 2 samples per digit i.e., 20 samples for testing the network. We test the network after the weights are modified 
by the training phase. We round off the output vectors for each testing sample to 0 or 1. The recognition rate of our 
training phase reaches 80 %. 
The results are summarized in the following table. 
 

Learning rate Momentum Testing set Accuracy 
0.5 0.2 20 Words 80 % 

 
Thus, accuracy of 80 % was achieved for the testing set of 20 words. A learning rate of 0.5 and momentum of 0.2 were 
found to give best recognition rate and fast training.  
 

VI.CONCLUSION 

This paper is showing that neural networks can act as very powerful speech signal classifiers. Back-propagation 
training for a multi-layer feed-forward network results in neural network architecture whose weights are modified in 
such a way that it acts as an independent word speech recognizer. The flow of error (actually, the effect of error) takes 
place in backwards direction, modifying the weights in such a way that the back propagation network classifies the 
input samples with a reasonable accuracy. We used 1000 epoch of 50 samples for training the back-propagation 
network and 20 samples for testing it. The recognition accuracy of the back-propagation network implemented for 
pattern recognition reaches 80 %. 
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