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ABSTRACT: A new image denoising method based on curvelet transform is proposed. The limitations of commonly 

used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the 

geometry of image edges are well known. Here, we pursue "true" two-dimensional transform that can capture the 

intrinsic geometrical structure that is key in visual information. Denoising of an image is done by processing an image 

through Wiener filter and using curvelet transform [1], [6]. Experimental results show that proposed denoising 

technique performs better in terms of the PSNR. We have compared PSNR values of proposed algorithm with that of 

wavelet and curvelet in RBG and YCbCr regions. 
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I.      INTRODUCTION 

Visual perception has become an essential part of communication in today’s world. Because of which it is important to 

ensure that transmitted data is not corrupted by any kind of unwanted signals called noise. Noises are generated due to 

the improper modelling of production and/or capturing system of the signal. Therefore, real world signals usually contain 

deviations from the ideal signal that is expected. Image denoising is an important pre-processing task for further image 

processing such as edge detection or image segmentation. The main aim of any denoising algorithm is to reduce noise 

levels, while preserving the image features. At present day, there are various image denoising algorithms available which 

are successful in denoising a noisy image, but are inefficient in attaining better signal to noise ratio and/or retaining the 

image features.  

II.     RELATED WORKS 

 

Although the DWTs have established an impressive reputation as a tool for mathematical analysis and signal processing, 

it has the disadvantage of poor directionality, which has undermined its usage in many applications. Significant progress 

in the development of directional wavelets has been made in recent years. The complex wavelet transform have 

improved directional selectivity. However, the complex wavelet transform has not been widely used in the past, as it is 

difficult to design complex wavelets with perfect reconstruction properties and good filter characteristics. The dual-tree 

complex wavelet transform (DT CWT) proposed by Kingsbury [4], which added perfect reconstruction to the other 

attractive properties of complex wavelets. 

 

The 2-D complex wavelets are essentially constructed by using tensor-product one-dimensional (1-D) wavelets. The 

directional selectivity provided by complex wavelets (six directions) is much better than that obtained by the classical 

DWTs (three directions), but is still limited.  

 

In 1999, an anisotropic geometric wavelet transform, named ridgelet transform, was proposed by Candès and Donoho 

[6]. The ridgelet transform is optimal at representing straight-line singularities. Unfortunately, global straight-line 

singularities are rarely observed in real applications. To analyse local line or curve singularities, a natural idea is to 

consider a partition of the image, and then to apply the ridgelet transform to the obtained sub images. This block ridgelet-

based transform, which is named curvelet transform, was first proposed by Candès and Donoho in 2000. 
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III.      PROPOSED ALGORITHM 

 

In this paper, we propose a novel denoising method. The method uses curvelet transform and Wiener filtering [8] to 

denoise an image. Initially we obtain a noisy image by degrading it by adding additive Gaussian noise (most common 

type of noise). Then we implement our algorithm, which firstly passes it through a Wiener filter. And then the output of 

which is then applied by curvelet transform. The resultant image is denoised and also retains the important image 

information. Fig.1 shows the flow of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig.1. Proposed Algorithm 

 

A. WIENER FILTERING 

 

The Wiener filter is commonly utilized because of its simplicity and its speed. It is deemed simple because it uses a 

system of linear equations to calculate a set of optimal filter weights that reduce the noise level of a received signal. It 

estimates cross-correlation and covariance matrices of noisy signals to calculate these weights and provide an accurate 

Estimate of the undistorted deterministic signal under Gaussian noise. The noise statistics are estimated and then used to 

determine a set of optimal filter weights. By then processing a new input signal, containing similar noise characteristics, 

with the optimal filter weights, the signal deterministic component is estimated. This method is optimal when the noise 

distribution is Gaussian. Furthermore, its execution only requires a few computational steps that are very fast to process. 
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The inverse filtering is a restoration technique for deconvolution, i.e., when the image is blurred by a known lowpass 

filter, it is possible to recover the image by inverse filtering or generalized inverse filtering. However, inverse filtering is 

very sensitive to additive noise. The approach of reducing one degradation at a time allows us to develop a restoration 

algorithm for each type of degradation and simply combine them.  

 

The Wiener filtering executes an optimal trade-off between inverse filtering and noise smoothing. It removes the additive 

noise and inverts the blurring simultaneously. The Wiener filtering is optimal in terms of the mean square error. In other 

words, it minimizes the overall mean square error in the process of inverse filtering and noise smoothing. The Wiener 

filtering is a linear estimation of the original image. The approach is based on a stochastic framework. The orthogonality 

principle implies that the Wiener filter in Fourier domain can be expressed as follows: 

 

          
Where Sxx(f1,f2), Snn(f1,f2) are respectively power spectra of the original image and the additive noise, and H(f1,f2) 

is the blurring filter [8]. 

  

B. CURVELET TRANSFORM 

 

Curvelets are based on multiscale ridgelets combined with a spatial bandpass filtering operation to isolate different scale. 

Like ridgelets, curvelets occur at all scales, locations, and orientations. However, while ridgelets all have global length 

and variable widths, curvelets in addition to a variable width have a variable length and so a variable anisotropy. The 

length and width at fine scales are related by a scaling law width length
2
 and so the anisotropy increases with 

decreasing scale like a power law. Recent work shows that thresholding of discrete curvelet coefficients provide near-

optimal N–term representations of otherwise smooth objects with discontinuities along curves. Thus for 

understanding curvelet, we should knowledge about ridgelet and radon transform. 

  

i) Continuous Ridgelet Transform 

 

 The ridgelet transform [3], [7] of two-dimensional function f (x, y) allows the sparse representation of both smooth 

function and of straight edges by superposition of ridgelet function. For every L
2
 (R

2
) we get its ridgelet coefficients Rf 

(a,b,θ) by a inner product with the frame like function Ψa,b,θ (x) which is a wavelet in transverse orientation constant 

along the line x1cosθ + x2sinθ = constant. For every a>0, each b ϵ R and each θ ϵ [0, 2π), the bivariate ridgelet Ψa,b,θ is 

given by 

  

 

This function is constant along the lines x1cosθ +x2 sinθ =constant. Transverse to these ridges it is a wavelet. 

 

Given an integrable bivariate function f(x), the ridgelet coefficients by 

 
 

The reconstruction formulae is given as 

 

 
 

The above equation (4) is valid for both integrable and square integrable. Furthermore, this formula is stable as one has a 

Parseval relation is given by 

(2) 

(1) 

0 

(3) 

(4) 
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Hence, much like the wavelet or Fourier transforms, the identity (5) expresses the fact that one can represent any 

arbitrary function as a continuous superposition of ridgelets. 

 

ii) Radon Transform 

 

A basic tool for calculating ridgelet coefficients is to view ridgelet analysis as a form of wavelet analysis in the Radon 

domain. The Radon transform of an object f is the collection of line integrals indexed by (θ,t) ϵ [0,2π) €×R. 

 

 
 

Where δ is the Dirac distribution. The ridgelet coefficients Rf(a,b,θ) of an objects  f  are given by analysis of the Radon 

transform via 

 
 

Hence, the ridgelet transform [2] is precisely the application of a one-dimensional (1-D) wavelet transform to the slices 

of the Radon transform where the angular variable θ is constant and t is varying. 

 

iii) Discrete Curvelet Transform of Continuum Function 

 

The discrete curvelet transform[7] of a continuum function f(x1,x2) makes use of a dyadic sequence of scales, and a bank 

of filters  with the property that the pass band filter  is concentrated near the frequencies [ 

] e.g. 

 

 
 

In wavelet theory, one uses decomposition into dyadic subbands  In contrast, the subbands used in the 

discrete curvelet transform of continuum functions have the nonstandard form . This is nonstandard feature 

of the discrete curvelet transform well worth remembering.  
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Fig.2. First Generation Discrete curvelet Transform (DCTG1) flowchart.  

 

The Fig. 2 illustrates the decomposition of the original image into sub-bands followed by the spatial partitioning of each 

sub-band. The ridgelet transform [5] is then applied to each block. 

 

The curvelet decomposition is the sequence of the following steps. 

 

 sub-band decomposition : The object is decomposed into subbands 

 
 Smooth Partitioning : Each subband is smoothly windowed into ―squares‖ of an appropriate scale (of side length 

) 

 
 Smooth Partitioning : Each subband is smoothly windowed into ―squares‖ of an appropriate scale (of side length 

) 

 
 Renormalization : Each resulting square is renormalized to unit scale. 

 
 Ridgelet Analysis : Each square is analyzed in the ortho-ridgelet system. 

 
 

In this definition, the two dyadic subbands  and  are merged before applying the ridgelet 

transform. 
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IV. PERFORMANCE CALCULATION 

 

In this paper, we presented a strategy for denoising a noisy image by the wiener and the curvelet transforms. The noise 

level in an image can be estimated by calculating the PSNR value. Therefore, performance can be measured by 

comparing the PSNR values of the noisy, curvelet and the proposed algorithm. Mean Square Error is defined as: 

 

 
Where m, n represent number of rows and columns in the input image. I (i,j) and K (i,j)  denotes the noise free and  noisy 

pixel image respectively . 

 

We used the peak signal-to-noise ratio (PSNR) measure to assess quality of the restored image and to compare the 

results quantitatively with previous filtering algorithms. The PSNR measure is defined as: 

   
 

V. RESULT AND DISCUSSION 

 

We test our algorithm with Peppers and Lena image. The tested images are corrupted with Gaussian white noise with 

noise standard deviation (σ) 10,20,30,40,50,60,70 respectively. The qualitative analysis of Peppers and Lena images, 

corrupted with White Gaussian noise, is shown in Fig. 3 and Fig. 5. The Peppers image corrupted with severe white 

Gaussian noise attack is demonstrated in Fig.3. Compare to curvelet algorithms, our proposed scheme highlights the 

best visible quality of the restored Peppers image. Table1 and 2 shows the simulation results, in terms of PSNR 

measure, for peppers and Lena standard images. In Table 1, our proposed scheme provided the best PSNR value for the 

Peppers image at various noise standard deviations. However, curvelet transform has given considerably low value. 

Fig. 4 and 6 shows the plot of PSNR values of proposed algorithm along with curvelet transform output and noisy 

image. We observed that the PSNR value of our proposed method is higher compare to curvelet transform and it works 

well for all the level of noises. 

 

 

 

Fig.3. Peppers image with  σ = 40 dB (a) original input image i.e. without noise, (b) image contaminated with white 

Gaussian noise, (c) Output image of Wiener filter, (d) output image of the proposed method. 
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TABLE 1.  σ Vs PSNR value of peppers image. 
 

 

 

 
Fig.4. Plots the PSNR values of proposed algorithm along with curvelet transform output and noisy image. 

 

 
Fig.5. Lena image with σ = 40dB (a) original input image i.e. without noise, (b) image contaminated with white 

Gaussian noise, (c) Output image of Wiener filter, (d) output image of the proposed method 

 

TABLE 2.  σ Vs PSNR value of Lena image. 

 

σ 
(dB) 

PSNR 

Proposed 

algorithm 
(dB) 

Curvelet 
transform(dB) 

Noisy 
image(dB) 

10 36.9005 28.2351 28.1175 

20 31.5529 22.3884 22.1399 

30 28.2837 18.8994 18.5744 

40 26.0427 16.4484 16.0827 

50 24.2623 14.5365 14.1599 

60 22.6327 12.9518 12.5784 

70 21.2731 11.6126 11.2468 

 

σ (dB) 

PSNR 

Proposed 
algorithm in 

(dB) 

Curvelet 

transform(dB) 

Noisy 

image(dB) 

10 36.4913 28.2318 28.1118 

20 31.3377 22.3253 22.0901 

30 28.1687 18.9076 18.5945 

40 25.9377 16.4319 16.0804 

50 24.0712 14.5199 14.1539 

60 22.5495 12.9343 12.5663 

70 21.3423 11.6289 11.2541 
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Fig.6. Plots the PSNR values of proposed algorithm along with curvelet transform output and noisy image. 

V. CONCLUSION 

Our proposed denoising algorithm has denoised pepper image and the PSNR value have been found to better than the 

curvelet and the wavelet transform. The algorithm performs even better in YCbCr region than in RGB region. The PSNR 

versus sigma graph has also been plotted which clearly explains that the proposed algorithm is more efficient. The graph 

shows a decrease in PSNR value as the sigma value increases, which is natural because, as the noise increases the signal 

to noise ratio is expected to decrease. 
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