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ABSTRACT: In this paper PAPR is reduced at downlink scheme by using PMP pre coding at transmitter section. By 
using FITRA algorithm with l infinity minimization we can reduce PAR, but practical implementation is complex, to 
overcome this we use l1 minimization in addition to FITRA algorithm which can reduce computational complexity of 
FITRA. We compare our results with FITRA.We prove that our  method will reduce computational complexity of 
FITRA. 
 

I. INTRODUCTION 
 

After more than thirty years of research and growth carried out in the field of communication OFDM has been widely 
implemented in high speed digital communication. OFDM has its major benefits of higher data rates and better 
performance. The higher data rates are achieved by use of multiple carriers and performance improved by use of guard 
interval which leads to removal of Inter Symbol Interference (ISI) . OFDM has several features which makes it more 
advantageous for high speed data transmission. These features include High Spectral competence, Robustness to 
Channel Fading, and Immunity to Impulse Interference, litheness and Easy Equalization. In spite of these benefits there 
are some drawbacks such as PAPR, Offset frequency and Inter Carrier Interference (ICI) between sub-carriers. 
Practical wireless channels typically exhibit frequency selective fading and a low-PAR precoding solution suitable for 
such channels would be desirable. rather, the solution should be such that the complexity required in each (mobile) 
terminal is small (due to stringent area and authority constraints), whereas heavier dispensation could be afforded at the 
BS. Orthogonal frequency-division multiplexing (OFDM) is an efficient and well-established way of commerce with 
frequency selective channels. In addition to simplify the equalization at the receiver, OFDM also facilitates per-tone 
influence and bit allocation, scheduling in the frequency domain, and band shaping. However, OFDM is known to 
suffer from a high PAR [9], which necessitate the use of linear RF components (e.g., power amplifiers) to avoid out-of-
band radiation and signal distortions. Unfortunately, linear RF components are, in general, more costly and less power 
efficient than their non-linear counterparts, which would eventually result in exorbitant costs for large-scale BS 
implementations having hundreds of antennas. Therefore, it is of paramount consequence to reduce the PAR of OFDM-
based large-scale MU-MIMO s to facilitate parallel low-cost and low-power BS implementations. 
 
A. Contributions 
In this paper, we develop a novel system broadcast scheme for large-scale MU-MIMO-OFDM wireless s, which only 
affects the signal processing at the BS while leaving the meting out required at each terminal undamaged. The key idea 
of the proposed scheme is to exploit the excess of degrees-of-freedom (DoF) offered by equip the BS with a large 
number of antennas and to jointly perform MU precoding, OFDM modulation, and PAR reduction, referred to as PMP 
in the remnants of the paper. Our contributions can be summarized as follows: • We formulate PMP as a convex 
optimization problem, which in cooperation performs MU precoding, OFDM modulation, and PAR reduction at the 
BS. • We develop and examine a novel optimization algorithm, referred to as fast iterative truncation algorithm 
(FITRA), which is able to find the solution to PMP efficiently for the (typically large) dimensions arising in large-scale 
MU-MIMO-OFDM s. • We present numerical simulation results to demonstrate the capability of the proposed MU-
MIMO-OFDM system spread scheme. Specifically, we analyze the trade-offs between PAR, error-rate performance, 
and out-of-band radiation, and we present a comparison with conventional preceding schemes.  b. Notation lowercase 
bold-face writing for column vectors and upper-case bold-face letters designate matrix. The M×M distinctiveness 
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matrix is denoted by Im. The M×N all zeros matrixes by 0m×n. and Fm refers to the M×M discrete Fourier 
transform(DFT) matrix. 
 
B. Outline of the Paper 
The remainder of the paper is organized as introduces the  model and summarizes important PAR-reduction concepts. 
The proposed system transmission scheme is detailed and the fast iterative truncation algorithm (FITRA) is developed.  
 

Modulation 
Demodulation 

 
 

Fig:1 Downlink scheme 
 

II. EXISTING METHOD 
 
I). FITRA ALGORITHM 

Compressed Sensing is the name assigned to the idea of encoding a large sparse signal using a relatively 
small number of linear measurements, and minimizing the `1-norm (or its variants)in order to decode the 
signal. New results reported by Candes et al [4, 2, 3], Donoho et al [12,53, 13] and others [45, 51] stimulated 
the current burst of research in this area. Applications of compressed sensing include compressive imaging 
[56, 57, 47], medical imaging, multisensory and distributed compressed sensing [1], analog-to-information 
conversion [52, 27, 30, 29], and missing data recovery. Compressed sensing is attractive for these and other 
potential applications because it reduces the number of measurements required obtaining a given amount of 
information. The trade-off is the addition of a non-trivial decoding process. 

CS channel estimation method concerns the sparse reconstruction problem of estimating an unknown   
sparse channel vector from an observed vector of measurements R∈CM based on the linear model, namely 
the measurement  
by omitting the superscript for brevity. 

          

 where = m N m ψ φ F ∈C × is a known measurement matrix, Z' is the measurement noise vector, and 
channel vector h is L sparse, 
where L is the number of multipath and is much 

 where = m 
 m ψ φ F ∈C × is a known measurement matrix, Z' is the measurement noise vector, and channel vector h is  
L sparse, where L is the number of multipath and is much 
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where c > 0 is a constant. Secondly, the measurement matrix ψ should satisfy the RIP, namely, for all L-
sparse vector h, we have 

 
Where  is the isometry constant, 

  is the l2-norm. 

For the concerned  in another word, the RIP requires 

the rows  of m φ cannot sparsely represent the column  of F  and vice versa. Now we prove the 
RIP of the measurement matrix = m ψ φ F .As we mentioned above, mφ is the m-by-N matrix which consists 
of m unit vectors { } i e , and it is the unit matrix IN  when the number of pilot m is N. F is the N-by-N DFT 

matrix, which is also the unitary matrix. Since   , every row of I, ei, can be expressed as where   
is the conjugate operation, j ,i F is the (j, i)- th element 
of DFT matrix F , and j F is the j-th column vector of F.  
 

 
Fig. 3. PAR and SER performance for various precoding schemes. The target PAR for LS+clip is 4 dB 

andλ=0.25for PMP relying onFITRA. 

 
(a)PAR performance (the curves of LS and MF overlap). Note that PMP effectively reduces the PAR 

compared to LS and MF precoding. 
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(b) Symbol error-rate (SER) performance. Note that the signal normalization causes 1dB SNR-

performance loss for PMP compared to LS precoding. The loss of MF is caused by 
residual MUI; the loss of LS+clip is caused by normalization and residual MUI. Peak to Average 

Power Ratio 
 
A. PAPR Problem 
One of the new problems emerging in OFDM s is the so-called Peak to Average Power Ratio (PAPR) problem. The 
input symbol stream of the IFFT should possess a uniform power spectrum, but the output of the IFFT may result in a 
non-uniform or spiky power spectrum. Most of transmission energy would be allocated for a few instead of the 
majority 
subcarriers. This problem can be quantified as the PAPR measure. It causes many problems in the OFDM  at the 
transmitting end. 
 
B. Effect of PAPR 
There are some obstacles in using OFDM in transmission in contrast to its advantages [3]: 
(i) A major obstacle is that the OFDM signal exhibits a very high Peak to Average Power Ratio (PAPR). 
(ii) Therefore, RF power amplifier should be operated in a very large linear region. Otherwise, the signal peaks get into 
non-linear region of the power amplifier causing signal distortion. This signal deformation introduces intermediation 
among the subcarriers and out of band radiation. Thus, the power amplifiers should be operated with large power back 
offs. On the other hand, this leads to very inefficient amplification and expensive transmitters. Thus, it is highly 
desirable to reduce the PAPR. 
(iii) These large peaks cause saturation in power amplifiers, leading to inter modulation products among the subcarriers 
and disturbing out of band energy. Therefore, it is desirable to reduce the PAPR. 
(iv) To reduce the PAPR, several techniques have been proposed such as clipping, coding, peak windowing, Tone 
Reservation and Tone Injection. But, most of these methods are unable to achieve simultaneously a large reduction in 
PAPR with low complexity, with low coding overhead, without performance degradation and without transmitter 
receiver symbol handshake. (v) Complexity is increased in the analog to digital and digital 
to analog converter. 
 
C. Calculation of PAPR: 
 
The peak to average power ratio for a signal  is defined as 

, where 

 corresponds to the conjugate operator. 
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Expressing in decibels 
, 

. 
III. PROPOSED TECHNIQUES 

 
Sparse representation: 
 
Norm minimization Problems: 
 

• L1 norm: ||x||= 
Minimize ||Ax-b|| is equivalent to this LP in x R^n, s R^n: 
                              Minimize t 
                             Subject to Ax-b≤s 
                                               Ax-b≥-s 

• L∞ norm: ||x||∞=max i{|Xi|} 
Minimize ||Ax-b||∞ is equivalent to this LP in 
x R^n, t R: 
                             minimize t 
                             subject to Ax-b≤t1 
                                              Ax-b≤-t1 
 
Dual Linear Programming 
 

• Primal Problem in standard form: 
                          Minimize cTx 
                          Subject Ax=b 
                                           x≥0 

• Write down Lagrangain using Lagrange multipliers lamba,v: 
  L(x,lamda,v)=cTx-+vT(Ax-b)=-bTv+(c+A┬v-lamda)Tx 
 

• Find Lagrange dual function: 
g(lamda,v)=inf L(z,lamda,v)=-bTv+inf{(c+aTv-lamda)T.x} 
since a linear function is bounded below only if is identically Zero,we 
have  
            g(lamda,v)= 

l1-minimization (`1-min) has been one of the hot topics in the signal processing and optimization communities in the 
last five years or so. In compressive sensing (CS) theory [9], [16], [8], it has been shown to be an efficient approach to 
recover the sparsest solutions to certain underdetermined systems of linear equations. More specifically, assuming there 
exists an unknown signal x0 2 Rn, a measurement vector b 2 Rd can be generated by a linear projection b = Ax. If we 
assume the sensing matrix A to be full-rank and overcomplete, i.e., d < n, an `1-min program solves the following 
convex optimization problem 
 
(P1) : min kxk1 subject to b = Ax: (1)  
The formulation of (P1) constitutes a linear inverse problem, as the number of measurements in b is smaller than the 
This work was partially supported by.The views and conclusions contained in this document are those of the authors 
and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research 
Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute for Government 
purposes notwithstanding any copyright notation hereon. A. Yang and S. Sastry are with the Department of Electrical 
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Engineering and Computer Sciences, University of California, Berkeley, USA. A. Ganesh, and Y. Ma are with the 
Coordinated Science Laboratory, University of Illinois, Urbana, USA. Y. Ma is also with the Visual Computing Group, 
Microsoft Research Asia, Beijing, China. Corresponding author: Allen Yang, Cory Hall, University of California, 
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unknowns in x. However, CS theory shows that if x0 is sufficiently sparse and the sensing matrix A is incoherent with 
the basis under which x0 is sparse (i.e., the identity matrix in its standard form (1)), x0 can be exactly recovered. This 
sparsity-seeking property of (P1) has been shown to have tremendous applications in geophysics, data compression, 
image processing, sensor networks, and most recently computer vision. The reader is referred to [9], [2], [8] for a 
comprehensive review of these applications. Traditionally, (P1) has been formulated as a linear programming (LP) 
problem, such as in basis pursuit (BP) [11]. However, one can show that the computational complexity of these 
general-purpose algorithms is often too high for many real-world, large-scale applications. Alternatively, heuristic 
greedy algorithms have been developed to approximate (P1), which are also significantly faster than using LP. 
Orthogonal matching pursuit (OMP) [14] and least angle regression (LARS) [18] are two well-known algorithms in this 
category. Empirically, these greedy algorithms often can find sufficiently good solutions to approximate (P1). 
However, they may also fail in some conditions (one negative example for OMP is discussed in [38]). In practice, the 
exact 
 
`1-MINIMIZATION ALGORITHM 
A. Gradient Projection Methods 
We first discuss gradient projection (GP) methods that seek sparse representation x along certain gradient direction, 
which induces much faster convergence speed. The approach reformulates the `1-min as a quadratic programming 
(QP) problem compared to the LP implementation in PDIPA.We start with the `1-min problem (P1;2). It is equivalent 
to the so-called LASSO objective function 

 
 
B. Homotopy Methods 
Both PDIPA and GP require the solution sequence to be close to a “central path”, which is often difficult to satisfy and 
computationally expensive in practice. A natural question arises: Are there any fast algorithms that are suitable for 
largescale applications and yet can recover the sparsest solutions in similar conditions as `1-min? In this section, we 
overview one such approach called homotopy methods [37], [31], [17]. The algorithm has intimate connection with two 
other greedy `1-min approximations, namely, least angle regression (LARS) [18] and polytope faces pursuit (PFP) [38]. 
For instance, if a k-sparse signal is sufficiently sparse, all three algorithms can find it in k iterations. On the other hand, 
LARS would never remove indices from the current sparse support set, while the general homotopy and PFP include 
mechanisms to remove coefficients from the sparse support during the iteration. More importantly, the homotopy 
algorithm provably solves `1-min (P1), while LARS and PFP are only approximate solutions.  
 
C. Iterative Shrinkage-Thresholding Methods 
The homotopy algorithm employs a more efficient iterative update rule that only involves operations on those 
submatrices of A corresponding to the nonzero support of the current vector x. However, it may lose its computational 
competitiveness when the sparsity of x grows proportionally with the observation dimension d. In such scenarios, the 
complexity may still approach the worst-case upper-bound O(n3). In 
this section, we discuss iterative shrinkage-thresholding (IST) methods 
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IV. EXPERIMENTAL RESULTS 
 

 
 

V. CONCLUSION 
 
In this paper, we apply sparse representation based on l1 minimization applied to FITRA algorithm which is 
proposed in state-of –art methodology [1], by using sparse representation, we can reduce PAR values 
drastically.We compare our results with state-of-art criteria like FITRA using l-infinity minization,and we 
prove that our methodology will give better results based on PAR values which we obtained. 
It is applicable to hardware implementation also. 
 

VI. FUTURE WORK 
 
Here by  applying Mu (μ)-Law compression and expansion at the transmitter and receiver, is simple 
and nonlinear method for reducing PAPR.It is having less computational complexity and can 
achieve better results. 
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