
 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 514

 Software Fault Prediction Using Single Linkage
Clustering Method

K.C. Sujitha, S. Leninisha
PG Student, Dept. of IT, Easwari Engineering College, Chennai, Tamilnadu, India 1

Assistant Professor, Dept. of IT, Easwari Engineering College, Chennai, Tamilnadu, India 2

ABSTRACT—Until now, various techniques have been proposed for predicting fault prone modules based on prediction
performance. Unfortunately quality improvement and cost reduction has been rarely assessed. The main motivation here
is optimization of acceptance testing to provide high quality services to customers. From this perspective, the primary
goal of this proposed methodology is reduction of acceptance test effort based on fault prediction results using single
linkage clustering and simulation model. The prediction is conducted using test dataset and fault prone module are
predicted by means of jaccard similarity measure. Simulation model estimates number of discoverable faults and results
of simulation showed that the best strategy was to let the test effort be proportional to the number of expected faults in a
module multiplied by log(module size).

Index Terms—Jaccard similarity measure, prediction model simulation model, test effort estimation.

I. INTRODUCTION
 With the rapid development in size and complexity of software systems, quality assurance activities such as testing
and inspection have become more important for software developers and software purchasers who are responsible for
acceptance testing. Fault prediction model have the potential to improve the quality of systems and reduce the costs
associated with delivering those systems. Fault prediction modeling has become essential for the early identification of
fault-prone code. These studies typically produce fault prediction models which allow software engineers to focus
development activities on fault-prone code, thereby improving software quality and making better use of resources.
 To prioritize quality assurance efforts, the techniques have been proposed for predicting fault prone modules by their
probability of having a fault [8], the number of expected faults [6],[9] or the fault density [7]. Based on the prediction
results, tester can allocate limited testing efforts to fault prone modules so as to find more faults with smaller effort. Our
primary goal is to estimate the reduction of acceptance test effort that fault prediction can achieve. To achieve this goal,
we need to allocate test effort with appropriate strategy to each module after prediction. We need to compute the
expected number of discoverable faults with respect to test resources, resource allocation strategy, and set of modules to
be tested. Tests currently conducted by the company are not complete, and most software systems contain faults after
release [3]. The required test effort discovers as many faults as actual testing through simulation. To assess the cost
effectiveness of prediction we need to measure the effort for metrics collection, data cleansing and modeling.
 The next section explains related research ongoing in the fault prediction. In section 3 we explain architecture based
analysis for our proposed methodology. Section 4 describes the results and conclusion.

II. RELATED RESEARCH
 Various studies in fault prediction to industry dataset have been reported previously [11], [12], [13], few studies have

estimated the reduction of test effort or increase the quality of software achieved by fault prediction.
 Arisholm et al. 2010 proposed systematic and comprehensive investigation of methods to build and evaluate fault
prediction models [1]. To evaluate the fault proneness models, the three main aspects are (1) Data mining and machine
learning techniques are compared, (2) Assess the impact of using different metric sets such as source code structural
measures and change/fault history, (3) Performance of the models are compared in terms of accuracy, ranking ability,
cost effectiveness measure.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 515

 Bug prediction models are used to allocate software quality assurance efforts. Effort needed to review code or test
code when the prediction models are evaluated. Revisiting two common findings in the bug prediction literature (1)
process metrics outperform product metrics, (2) package level predictions outperform file level predictions [14], whereas
Kamei and et.al showed that file level predictions outperform package level predictions [4].
Many researchers have discussion on probability of having a fault to distinguish fault prone modules from fault free
modules [15]. On the other hand, some practitioners have discussion on number of faults to allocate quality assurance
resources based on number of expected bugs that exist before testing [6],[9]. Some researchers have chosen the fault
density rather than probability of having fault or number of faults since larger files have more defects [7].
 Graves et al. 2000 proposed predicting fault incidence using software change history [2].The code to be aged or
decayed if its structure makes it unnecessarily difficult to understand or change. Process measures based on the change
history are more useful in predicting fault rates than product metrics of the code. We also compare the fault rates of code
of various releases, if a module is a year older than similar module, the older module will have roughly a third fewer
faults i.e., the existing version contains lesser faults than current version for the same software project.

III. PROPOSED METHODOLOGY
 As shown in fig.1 the most suitable dataset has been considered as input which has been taken from the historical

dataset. By considering the dataset, prediction model is used to analyze the metrics in both source code and design
document. Base metrics is the number of lines already exists in the existing version and change metrics is the number of
lines added and deleted in the current version. Once the base metrics and change metrics is analyzed, single linkage
clustering method is used to analyze the modules dependency information based on minimum distance. Jaccard
similarity measure is used to calculate the distance. Based on the modules distance measure, simulation model is used to
assign the test effort to each module. The allocated test effort for each module is computed based on the given test effort
allocation strategy. After computing the test effort, fault discovery model discovers the fault with respect to the given test
resources, resource allocation strategy and set of modules to be tested. Fault discovery model computes the discoverable
faults in every module based on the test effort and module size. The number of initial faults before testing and the
expected number of discoverable faults in each module are identified by the tester. So that testing time and testing costs
are reduced by the tester to provide better services to the customer.

Fig.1. Proposed System Architecture

a. Prediction Model

 The prediction model is conducted to analyze the base metrics and change metrics in both source code and design
document. As shown in table 1, the base metrics for source code is the identification of number of lines in the existing
version and change metrics indicates number of lines added and number of lines deleted in the current version. In this

Dataset Prediction model

Single linkage clustering

Assign test effort
Fault discovery model

 Analyze module
dependency information

Predicted fault

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 516

prediction model, we need to predict both the number of faults and fault density and their prediction performance is
compared.

TABLE 1
MEASURED METRICS

Type Name Definition

 Source
Code

Metrics

 Base

 Metrics

LOC
VG

Lines of Code
Cyclomatic complexity

Change
Metrics

ADD
DEL
VG

Number of lines added
Number of lines deleted
Increase of cyclomatic complexity

Design
Metrics

Base

Metrics

PAGE
MOD

Number of pages
Number of workflow modules

Change
Metrics

PAGE
MOD

Increase of page from previous release
Increase of module from previous release

b. Single Linkage clustering

 The single linkage method is the best hierarchical methods and operates by joining the two most similar objects at
each step, which are not yet in the same cluster. The similarity of two clusters is the similarity of their most similar
members. As shown in fig.2, the link between two clusters is made by a single element pair, namely those two elements
that are closest to each other. In single linkage clustering, the modules are analyzed and then their dependency
information's are extracted. Based on the dependency information the modules distances are calculated

Fig.2. Single Linkage Clustering

 As shown in fig.3, the two clusters separated by the shortest distance are combined into cluster first and at each step,
we merge the closest pair of clusters until certain termination condition satisfied. For calculating, jaccard similarity
measure is used. Jaccard similarity measure follows single linkage method i.e., it identifies the minimum distance
between any two points in the two clusters. Jaccard similarity measure is defined as number of attributes common in two
clusters divided by total number of attributes in both clusters.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 517

Fig.3. Jaccard Similarity

 The modules are then clustered based on the jaccard distance metrics. As shown in equation 1, Jaccard similarity is a
measurement that is used for identifying the degree of similarity and diversity of two cluster C1and cluster C2. The
Jaccard coefficient used to measure the similarity between modules is defined as the size of the intersection divided by
the size of the union.

 Jaccard(C1,C2) =

 equ(1)

c. Test Effort Estimation

 In this module 7 possible test strategies are compared to choose the best strategy, to allocate test effort to each
module.

[1] Equal test effort to all modules.

This strategy is considered as a baseline strategy.

[2] Test effort based on new module size.

ti =t total .Si / S total

Where ttotal is total test effort of all modules, Si is size of ith module and S total is total size of all modules.

 To assign more test effort to larger modules, industries used this basic strategy. Arisholm et al. [1] pointed out that
effort needed to test or review the module is roughly proportional to size. Indeed, many companies use baseline values
for test case density, for e.g. in operational testing one must run at least 10 test cases per thousand lines of code

[3] Test effort based on new and modified modules.
 ti =t total . (Si

new + .1 X Si
reused) / (S total

new + .1 X S total
reused)

Where Si
new is the lines of new or modified code of the ith module, Si

reused is the lines of reused code of ith module, Stotal
new is the total lines of new or modified code, Stotal

reused is the total lines of reused code. This strategy distinguishes
new/modified code and reused code. Since new/modified code is more faulty than new code. This strategy counts only
10% of reused lines and 10% may not be the optimal value.

[4] Test effort based on predicted faults.

 ti = t total . F^
i / F^

total

Fi
^ is the number of predicted faults in ith module and F^

total is the total number of predicted faults in all modules. The
more test effort is allocated where more faults are predicted to find more faults by using this straightforward strategy.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 518

[5] Test effort based on predicted fault density.

 ti = t total . (F^
i / Si) / (F^

total / S total)

This strategy reduces the effect of size by allocating more effort to higher fault density modules.

[6] Test effort based on predicted faults and module size.

 ti = t total . F^
i / F^

total . Si / S total

This strategy is used to allocate more test effort on larger modules if they are likely to contain faults. This is a combination
of strategy 2 and 4.

[7] Test effort based on expected faults in module with log (module size).

 ti = t total . F^
i / F^

total .log(Si) /∑ log (S)

 Strategy 6 allocates more test effort to larger modules; if the total test effort is limited the faults in smaller modules
might not be found. Strategy 7 tries to reduce the effect of very large modules, while still giving additional test effort to
larger modules. Simulation model showed that the best strategy was to let the test effort be proportional to “the number of
expected faults in a module × log (module size)”. Based on the prediction results and total test effort, the allocated test
effort for each module is computed based on the given test effort allocation strategy.

d. Fault Discovery Model

Fault discovery model estimates the discoverable faults with respect to the resource allocation strategy, given test

resources and set of modules to be tested. This model computes discoverable faults in every module based on the given
test effort and module size. In this fault discovery model, the fault detection rate is inversely proportional to the size of the
module. All the modules have same parameter i.e, given a certain amount of test effort and same module size, the ease of
finding a fault becomes same. Then the number of initial faults before testing and the Probability of detecting each fault
per unit time are identified and the expected number of discoverable faults in each module is identified.

 IV RESULTS AND DISCUSSION

 The results of this proposed methodology rely on the fault discovery model, which we extended from the
exponential software reliability growth model. This proposed methodology used datasets which is collected from
different releases of one software project. Metrics are analyzed in both source code and design document of the suitable
dataset. The modules are clustered based on jaccard similarity measures and follows single linkage clustering method to
analyze the modules dependency information. After that a set of possible test strategies are applied to detect the fault
prone modules using simulation model. Given the prediction results and total test effort, the allocated test effort for each
module is computed based on the given test effort allocation strategy. These seven strategies are by no means complete.
To find better strategies in the future, we need to conduct simulation model with other strategies. Using the fault
discovery model the expected number of faults is predicted. We expect further researches to improve this model to be
more accurate and more realistic.

V CONCLUSION

 In this proposed methodology, we presented a method called single linkage clustering that helps testers to locate the
related faults and reduces the test effort by analyzing the modules dependency information. Using the simulation model,
there are seven test effort allocation strategies are compared to evaluate the cost effectiveness of fault prediction.
Strategy 4 and 7 were the two best strategies that could possibly reduce the test effort. By using the 7th strategy with our

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics

and Instrumentation Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Special Issue 2, April 2014

Copyright to IJAREEIE www.ijareeie.com 519

best fault prediction model, the test effort could be reduced by 25% to detect as many faults as actual testing. The
reduction of test effort is achieved only if the appropriate test strategy is employed with high fault prediction accuracy. In
the future, it will be important to study whether it is possible to provide another tool for practitioners to reduce the
testing costs or increasing the quality produced by testing.

REFERENCES

[1] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and comprehensive investigation of methods to build and evaluate fault

prediction models,” J. Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.
[2] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence using software change history,” IEEE Trans. Software Engineering,

vol.26, no.7, pp. 653-661, 2000.
[3] Information-technology Promotion Agency, Japan (IPA) Software Engineering Center (SEC) ed., “White papers on software development

projects in Japan, 2010-2011 Edition”, ISBN978-4-9905363-3-6, 2010.
[4] Y. Kamei, A. Monden, and K. Matsumoto, “Empirical evaluation of SVM-based software reliability model,” Proc. 5th ACM-IEEE Int’l

Symposium on Empirical Software Engineering (ISESE2006), vol. 2, pp. 39-41,2006.
[5] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A.E. Hassan, “Revisiting common bug prediction findings using effort

aware models,” Proc. 26th IEEE.
[6] T. M. Khoshgoftaar, A. Pandya, and D. Lanning, “Application of neural networks for predicting program fault,” Annals of Software Engineering,

vol. 1, pp. 141-154, 1995.
[7] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in source code files with decision tree learners”, Proc. 3rd Working

Conference on Mining Software Repositories (MSR2006), pp. 119-125, 2006.
[8] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for software defect prediction: A proposed framework

and novel findings,” IEEE Trans. on Software Engineering, vol. 34, no. 4, pp. 485-496, 2008.
[9] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences and results from initiating field defect prediction and product test prioritization

efforts at ABB Inc.,” Proc. 28th Int’l Conf. on Software Engineering, pp.413-422, 2006.
[10] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction models,” Proc. Int’l Conference on Predictor Models in Software

Engineering(PROMISE’09), pp. 1–10, 2009.
[11] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures,” Proc. 28th Int’l Conf. on Software Engineering (ICSE2006),

pp.452-?, 2006.
[12] N. Ohlsson, and H. Alberg, “Predicting fault-prone software modules in telephone switches,” IEEE Trans. Software Engineering, vol. 22, no. 12,

pp. 886-894, 1996.
[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and number of faults in large software systems,” IEEE Trans. on Software

Engineering, vol. 31, no. 4, pp. 340-355, 2005.
[14] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component failures at design time,” Proc. 2006 ACM/IEEE Int’l Symposium on

Empirical Software Engineering (ISESE’06), pp. 18–27, 2006.
[15] B.Turhan, T. Menzies, A.Bener, and J. Distefano, “On the relative value of cross-company and within-company data for defect prediction”,

Empirical Software Engineering, vol. 14, no. 5, pp. 540-578, 2009.

BIOGRPHY

K.C.Sujitha received the B.Tech. degree in Information Technology from Jaya Engineering College affiliated to Anna
University, Chennai, in 2009. Now she is currently pursuing M.E. degree in Software Engineering, Easwari Engineering
College affiliated to Anna University, Chennai.

 S. Leninisha received the B.E. degree in Computer Science and Engineering from Madurai Kamaraj
University, Tamil Nadu, Chennai, in 2000, the M.E. degree in Computer Science and Engineering from
Anna University, Tamil Nadu, Chennai, in 2006 and the currently pursuing Ph.D.degree in Anna
University, Chennai in Faculty of Information and Communication Engineering, registered in July
2011. She has Around 10 years of teaching experience. Now she is working as a Assistant Professor
(Selection Grade) in Easwari Engineering College affiliated to Anna University, Chennai, Tamil Nadu.
Also, she is a Member of IEEE and IET professional body. Her main research interests are feature
extraction in remotely sensed images, pattern recognition, and invariants for object recognition. She

published two papers in international conference in her research area.

