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ABSTRACT—Until now, various techniques have been proposed for predicting fault prone modules based on prediction 
performance. Unfortunately quality improvement and cost reduction has been rarely assessed. The main motivation here 
is optimization of acceptance testing to provide high quality services to customers.  From this perspective, the primary 
goal of this proposed methodology is reduction of acceptance test effort based on fault prediction results using single 
linkage clustering and  simulation model. The prediction is conducted using test dataset and fault prone module are 
predicted by means of jaccard similarity measure. Simulation model estimates number of discoverable faults and results 
of simulation showed that the best strategy was to let the test effort be proportional to the number of expected faults in a 
module multiplied by log(module size).  

 
Index Terms—Jaccard similarity measure, prediction model simulation model, test effort estimation. 

I. INTRODUCTION 
   With the rapid development in size and complexity of software systems, quality assurance activities such as testing 
and inspection have become more important for software developers and software purchasers who are responsible for 
acceptance testing. Fault prediction model have the potential to improve the quality of systems and reduce the costs 
associated with delivering those systems. Fault prediction modeling has become essential for the early identification of 
fault-prone code. These studies typically produce fault prediction models which allow software engineers to focus 
development activities on fault-prone code, thereby improving software quality and making better use of resources.  
    To prioritize quality assurance efforts, the techniques have been proposed for predicting fault prone modules by their 
probability of having a fault [8], the number of expected faults [6],[9] or the fault density [7]. Based on the prediction 
results, tester can allocate limited testing efforts to fault prone modules so as to find more faults with smaller effort. Our 
primary goal is to estimate the reduction of acceptance test effort that fault prediction can achieve. To achieve this goal, 
we need to allocate test effort with appropriate strategy to each module after prediction. We need to compute the 
expected number of discoverable faults with respect to test resources, resource allocation strategy, and set of modules to 
be tested. Tests currently conducted by the company are not complete, and most software systems contain faults after 
release [3]. The required test effort discovers as many faults as actual testing through simulation. To assess the cost 
effectiveness of prediction we need to measure the effort for metrics collection, data cleansing and modeling. 
  The next section explains related research ongoing in the fault prediction. In section 3 we explain architecture based 
analysis for our proposed methodology. Section 4 describes the results and conclusion. 

II. RELATED RESEARCH 
       Various studies in fault prediction to industry dataset have been reported previously [11], [12], [13], few studies have 

estimated the reduction of test effort or increase the quality of software achieved by fault prediction. 
     Arisholm et al. 2010 proposed systematic and comprehensive investigation of methods to build and evaluate fault 
prediction models [1]. To evaluate the fault proneness models, the three main aspects are (1) Data mining and machine 
learning techniques are compared, (2) Assess the impact of using different metric sets such as source code structural 
measures and change/fault history, (3) Performance of the models are compared in terms of accuracy, ranking ability, 
cost effectiveness measure. 
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      Bug prediction models are used to allocate software quality assurance efforts. Effort needed to review code or test 
code when the prediction models are evaluated. Revisiting two common findings in the bug prediction literature (1) 
process metrics outperform product metrics, (2) package level predictions outperform file level predictions [14], whereas 
Kamei and et.al showed that file level predictions outperform package level predictions [4]. 
Many researchers have discussion on probability of having a fault to distinguish fault prone modules from fault free 
modules [15]. On the other hand, some practitioners have discussion on number of faults to allocate quality assurance 
resources based on number of expected bugs that exist before testing [6],[9]. Some researchers have chosen the fault 
density rather than probability of having fault or number of faults since larger files have more defects [7]. 
      Graves et al. 2000 proposed predicting fault incidence using software change history [2].The code to be aged or 
decayed if its structure makes it unnecessarily difficult to understand or change. Process measures based on the change 
history are more useful in predicting fault rates than product metrics of the code. We also compare the fault rates of code 
of various releases, if a module is a year older than similar module, the older module will have roughly a third fewer 
faults i.e., the existing version contains lesser faults than current version for the same software project. 

III. PROPOSED METHODOLOGY 
    As shown in fig.1 the most suitable dataset has been considered as input which has been taken from the historical 

dataset. By considering the dataset, prediction model is used to analyze the metrics in both source code and design 
document. Base metrics is the number of lines already exists in the existing version and change metrics is the number of 
lines added and deleted in the current version. Once the base metrics and change metrics is analyzed, single linkage 
clustering method is used to analyze the modules dependency information based on minimum distance. Jaccard 
similarity measure is used to calculate the distance. Based on the modules distance measure, simulation model is used to 
assign the test effort to each module. The allocated test effort for each module is computed based on the given test effort 
allocation strategy. After computing the test effort, fault discovery model discovers the fault with respect to the given test 
resources, resource allocation strategy and set of modules to be tested. Fault discovery model computes the discoverable 
faults in every module based on the test effort and module size. The number of initial faults before testing and the 
expected number of discoverable faults in each module are identified by the tester. So that testing time and testing costs 
are reduced by the tester to provide better services to the customer. 

 

 

 

 

 

 

 

 

 
 

Fig.1. Proposed System Architecture 

a. Prediction Model 

        The prediction model is conducted to analyze the base metrics and change metrics in both source code and design 
document. As shown in table 1, the base metrics for source code is the identification of number of lines in the existing 
version and change metrics indicates number of lines added and number of lines deleted in the current version. In this 
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prediction model, we need to predict both the number of faults and fault density and their prediction performance is 
compared. 

TABLE 1 
MEASURED METRICS 

Type Name Definition 
 
 

  Source 
Code 

Metrics 

  
 Base 

  Metrics 

 
LOC 
VG 

 
Lines of Code 
Cyclomatic complexity 

 
Change 
Metrics 

 
ADD 
DEL 
VG 

 
Number of lines added 
Number of lines deleted 
Increase of cyclomatic complexity 

 
 

Design 
Metrics 

 
Base  

Metrics 

 
PAGE 
MOD 

 
Number of pages 
Number of workflow modules 

 
Change 
Metrics 

 
PAGE 
MOD 

 
Increase of page from previous release 
Increase of module from previous release 

 
b. Single Linkage clustering 

     The single linkage method is the best hierarchical methods and operates by joining the two most similar objects at 
each step, which are not yet in the same cluster. The similarity of two clusters is the similarity of their most similar 
members. As shown in fig.2, the link between two clusters is made by a single element pair, namely those two elements 
that are closest to each other. In single linkage clustering, the modules are analyzed and then their dependency 
information's are extracted. Based on the dependency information the modules distances are calculated 

 

 
Fig.2. Single Linkage Clustering 

    As shown in fig.3, the two clusters separated by the shortest distance are combined into cluster first and at each step, 
we merge the closest pair of clusters until certain termination condition satisfied. For calculating, jaccard similarity 
measure is used. Jaccard similarity measure follows single linkage method i.e., it identifies the minimum distance 
between any two points in the two clusters. Jaccard similarity measure is defined as number of attributes common in two 
clusters divided by total number of attributes in both clusters. 
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Fig.3. Jaccard Similarity 

 The modules are then clustered based on the jaccard distance metrics. As shown in equation 1, Jaccard similarity is a 
measurement that is used for identifying the degree of similarity and diversity of two cluster C1and cluster C2. The 
Jaccard coefficient used to measure the similarity between modules is defined as the size of the intersection divided by 
the size of the union. 

                                                                                      Jaccard(C1,C2) =     
  

               equ(1) 
 

c. Test Effort Estimation 

 In this module 7 possible test strategies are compared to choose the best strategy, to allocate test effort to each 
module.     

[1] Equal test effort to all modules. 

This strategy is considered as a baseline strategy. 

[2] Test effort based on new module size. 

ti =t total .Si / S total 

Where ttotal is total test effort of all modules, Si is size of ith module and S total is total size of all modules. 

   To assign more test effort to larger modules, industries used this basic strategy. Arisholm et al. [1] pointed out that 
effort needed to test or review the module is roughly proportional to size. Indeed, many companies use baseline values 
for test case density, for e.g. in operational testing one must run at least 10 test cases per thousand lines of code  

[3] Test effort based on new and modified modules. 
  ti =t total . (Si

new + .1 X Si 
reused) / (S total 

new + .1 X S total 
reused) 

Where Si
new is the lines of new or modified code of the ith module, Si 

reused is the lines of reused code of ith module, Stotal 
new is the total lines of new or modified code, Stotal 

reused is the total lines of reused code. This strategy distinguishes 
new/modified code and reused code. Since new/modified code is more faulty than new code. This strategy counts only 
10% of reused lines and 10% may not be the optimal value. 

[4] Test effort based on predicted faults. 

      ti = t total . F^ 
i / F^

total 

Fi
^  is the number of predicted faults in ith module and F^ 

total is the total number of predicted faults in all modules. The 
more test effort is allocated where more faults are predicted to find more faults by using this straightforward strategy. 
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[5] Test effort based on predicted fault density. 

 ti = t total . (F^ 
i / Si) / (F^ 

total / S total)  

This strategy reduces the effect of size by allocating more effort to higher fault density modules. 

[6] Test effort based on predicted faults and module size. 

  ti = t total . F^
i / F^

total . Si / S total 

This strategy is used to allocate more test effort on larger modules if they are likely to contain faults. This is a combination 
of strategy 2 and 4.  

[7] Test effort based on expected faults in module with log (module size). 

 ti = t total . F^
i / F^

total .log(Si) /∑ log (S ) 

 Strategy 6 allocates more test effort to larger modules; if the total test effort is limited the faults in smaller modules 
might not be found. Strategy 7 tries to reduce the effect of very large modules, while still giving additional test effort to 
larger modules. Simulation model showed that the best strategy was to let the test effort be proportional to “the number of 
expected faults in a module × log (module size)”. Based on the prediction results and total test effort, the allocated test 
effort for each module is computed based on the given test effort allocation strategy. 

 
d. Fault Discovery Model 

 
Fault discovery model estimates the discoverable faults with respect to the resource allocation strategy, given test 

resources and set of modules to be tested. This model computes discoverable faults in every module based on the given 
test effort and module size. In this fault discovery model, the fault detection rate is inversely proportional to the size of the 
module. All the modules have   same parameter i.e, given a certain amount of test effort and same module size, the ease of 
finding a fault becomes same. Then the number of initial faults before testing and the Probability of detecting each fault 
per unit time are identified and the expected number of discoverable faults in each module is identified. 
 
                                                                  IV     RESULTS AND DISCUSSION 

 
 The results of this proposed methodology rely on the fault discovery model, which we extended from the 
exponential software reliability growth model. This proposed methodology used datasets which is collected from 
different releases of one software project. Metrics are analyzed in both source code and design document of the suitable 
dataset. The modules are clustered based on jaccard similarity measures and follows single linkage clustering method to 
analyze the modules dependency information. After that a set of possible test strategies are applied to detect the fault 
prone modules using simulation model. Given the prediction results and total test effort, the allocated test effort for each 
module is computed based on the given test effort allocation strategy. These seven strategies are by no means complete. 
To find better strategies in the future, we need to conduct simulation model with other strategies. Using the fault 
discovery model the expected number of faults is predicted. We expect further researches to improve this model to be 
more accurate and more realistic. 

 
V     CONCLUSION 

 
 In this proposed methodology, we presented a method called single linkage clustering that helps testers to locate the 
related faults and reduces the test effort by analyzing the modules dependency information. Using the simulation model, 
there are seven test effort allocation strategies are compared to evaluate the cost effectiveness of fault prediction. 
Strategy 4 and 7 were the two best strategies that could possibly reduce the test effort. By using the 7th strategy with our 
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best fault prediction model, the test effort could be reduced by 25% to detect as many faults as actual testing. The 
reduction of test effort is achieved only if the appropriate test strategy is employed with high fault prediction accuracy. In 
the future, it will be important to study whether it is possible to provide another tool for practitioners to reduce the 
testing costs or increasing the quality produced by testing. 
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