

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

Simulation of Single Phase Multilevel Inverter Topology for Distributed Energy Resources Using Multi Inputs

B. Suresh Kumar¹, GantaJoga Rao²

M.Tech Scholar, Dept. of EEE, Chirala Engineering College, Chirala, India¹ Associate Professor, Dept. of EEE, Chirala Engineering College, Chirala, India²

ABSTRACT: In the microgrid system, single-phase inverter is usually used for the distributed energyresource (DER). To reduce conversion losses, Removing the transformer and reducing power devices will bring down the cost and zise of the converter. The objective of this paper is to build simulation of seven levelmultistring inverter topology for DERs based DC to AC system. In this paper, a high step-up converter issued as front-end stage to improve the conversionefficiency of conventional boost converters and to stabilize theoutput DC voltage of various DERs such as PV and fuel cellmodules for use with the simplified multilevel inverter. In addition, two actives witches are operated under line frequency. The simulatedseven level string inverter topology offers strong advantages such asimproved output waveforms, small filter size, and lowmagnetic interference and harmonic distortion. Simulation results show the effectiveness of the proposed solution.

Keywords: DC/AC power conversion, multilevel inverter.

I. INTRODUCTION

In light of public concern about global warming and climatechange, much effort has been focused on development ofenvironmentally friendly distributed energy resources (DERs).For delivering premium electric power in terms of highefficiency, reliability, and power quality, integrating interfaceconverters of DERs such as photovoltaic, wind power, microturbines, and fuel cells into the microgrid system has become acritical issue in recent years [1]-[4]. In such systems, mostDERs usually supply a DC voltage that varies in a wide rangeaccording to various load conditions. Thus, a DC/AC powerprocessing interface is required and is compliable withresidential, industrial, and utility grid standards [4]-[7].Various converter topologies have been developed forDERs [7]-[16] that demonstrate effective power flow controlperformance whether in grid-connected or stand-aloneoperation. Among them, solutions that employ high-frequency transformers or make no use of transformers at all have beeninvestigated to reduce size, weight, and expense. For lowmediumpower applications, international standards allow theuse of grid-connected power converters without galvanicisolation, thus allowing so-called "transformerless" architectures [7], [12]. Furthermore, as the output voltage levelincreases, the output harmonic content of such invertersdecreases, allowing the use of smaller and less expensiveoutput filters. As a result, various multilevel topologies are

usually characterized by a strong reduction in switchingvoltages across power switches, allowing the reduction of switching power losses and electromagnetic interference (EMI)[8], [11]. A single-phase multistring five-level inverterintegrated with an auxiliary circuit was recently proposed forDC/AC power conversion [12], [13]. This topology used in the power stage offers an important improvement in terms of lower component count and reduced output harmonics.Unfortunately, high switching losses in the additional auxiliarycircuit caused the efficiency of the multistring five-levelinverter to be approximately 4% less than that of the conventional multistring three-level inverter [13]. In [14], anovel isolated single-phase inverter with generalized zero

vectors (GZV) modulation scheme was first presented tosimplify the configuration. However, this circuit can still onlyoperate in a limited voltage range for practical applications use for degradation in the overall efficiency as the dutycycle of the DC-side switch of the front-end conventionalboost converter approaches unity [6], [14]. Furthermore, theuse of isolated transformer with multi-windings of the GZV based inverter results in the larger size, weight, and additional expense [14]. To overcome the above-mentioned problem, the objective of this paper is to study a newly-constructed transformerlessfive-level

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

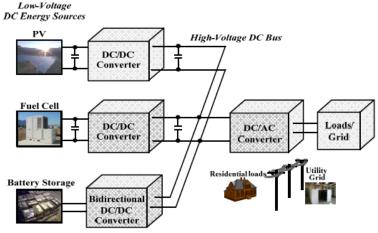
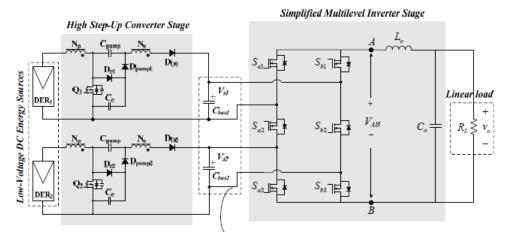


Fig. 1 Configuration of multistring inverter for various DERs application

multistring inverter topology for DERs. In this paper, the foresaid GZV-based inverter is reduced to a multistringmultilevel inverter topology that requires only six actives witches instead of the eight required in the conventional cascaded H-bridge (CCHB) multilevel inverter [16]. Inaddition, among them, two active switches are operated underline frequency. In order to improve the conversion efficiency of conventional boost converters, a high step-up converter [26] is also introduced as a front-end stage to stabilize the outputDC voltage of each DER modules for use with the simplified multilevel inverter. The newly-constructed inverter topology offer strong advantages such as improved output waveforms, smaller filter size, and lower EMI and total harmonics distortion (THD). In this paper, the operating principle of the developed system is described, and a Simulation is constructed for verifying the effectiveness of the topology.

II. SYSTEM CONFIGURATION OF OPERATION PRINCIPLES

A general overview of different types of photovoltaic (PV) modules or fuel cell inverters is given in [9]. Thispaper presents a multistring multilevel inverter for DERs application. The multistring inverter shown in Fig. 1 is a further development of the string inverter, whereby several strings are interfaced with their own DC/DC converter to a common inverter. This centralized system is beneficial because each string can be controlled individually. Thus, the operator may start his own PV/fuel cell power plant with a few modules. Further enlargements are easily achieved because a new string with a DC/DC converter can be plugged into the existing platform, enabling a flexible design with high efficiency [9]. The single-phase multistring multilevel inverter topology used in this study is shown in Fig. 2. This topology configuration consists of two high step-up DC/DC converters connected to their individual DC bus capacitor and a simplified multilevel inverter. Input sources, DER module 1, and DER module 2 are connected to the inverter followed a linear resistive load through the high step-up DC/DC converters. The studied simplified five-level inverter is used instead of a conventional phase disposition (PD) pulse width modulated (PWM) inverter because it offers strong advantages such as improved output waveforms, smaller filter size, and lower electromagnetic interference and THD. It should be noted that, by using the independent voltage regulation control of the individual high step-up converter, voltage balance control for the two bus capacitors *Cbus1*, *Cbus2* can be achieved naturally.


A. High Step-Up Converter Stage:

In this study, high step-up converter topology is introduced to boost and stabilize the output DC voltage of various DERs such as PV and fuel cell modules for employment of the proposed simplified multilevel inverter. The architecture of a high step-up converter initially introduced from, depicted in Fig. 2, and is composed of different converter topologies: boost, flyback, and a charge pump circuit. The coupled inductor of the high step-up converter in Fig. 2 can be modelled as an ideal transformer, a magnetizing inductor, and a leakage inductor. According to the voltage seconds balance condition of the magnetizing inductor, the voltage of the primary winding can be derived as

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

High-Voltage DC Bus Fig. 2 Single-phase multistring five-level inverter topology

where *Vin* represents each the low-voltage DC energy inputsources, and voltage of the secondary winding isSimilar to that of the boost converter, the voltage of thecharge-pump capacitor *Cpump* and clamp capacitor *Cc* can be expressed as

$$v_{pri} = V_{in} \cdot \frac{D}{(l-D)}$$

(1)

Hence, the voltage conversion ratio of the high step-upconverter, named input voltage to bus voltage ratio, can bederived as [26]

$$v_{soc} = \frac{N_s}{N_p} \cdot v_{pri} = \frac{N_s}{N_p} \cdot V_{in} \cdot D/(1-D)$$
⁽²⁾

B. Simplified Multilevel Inverter Stage

To assist in solving problems caused by cumbersome powerstages and complex control circuits for conventional multilevelinverters, this work reports a new single-phase multistringtopology, presented as a new basic circuitry in Fig. 3. Referring to Fig. 2, it should be assumed that, in this configuration the two capacitors in the capacitive voltagedivider are connected directly across the DC bus, and allswitching combinations are activated in an output cycle. The dynamic voltage balance between the two capacitors isautomatically controlled by the preceding high step-upconverter stage. Then, we can assume Vs1=Vs2=Vs.

This topology includes six power switches—two fewer thanthe CCHB inverter with eight power switches whichdrastically reduces the power circuit complexity and simplifiesmodulator circuit design and implementation. The PD PWMcontrol scheme is introduced to generate switching signals and to produce five output-voltage levels: zero, VS, 2VS, -VS, and -2VS. This inverter topology uses two carrier signals and onereference to generate PWM signals for the switches. Themodulation strategy and its implemented logic scheme in Fig.4(a) and (b) are a widely used alternative for phase dispositionmodulation. With the exception of an offset value equivalent to the carrier signal amplitude, two comparators are used in this scheme with identical carrier signals *Vtri1* and *Vtri2* toprovide high-frequency switching signals for switches *Sa1*, *Sb1*,*Sa3* and *Sb3*. Another comparator is used for zero crossing detection to provide linefrequency switching signals forswitches *Sa2* and *Sb2*.

For convenient illustration, the switching function of theswitch in Fig. 3 is defined as follows: Table I. lists switching combinations that generate therequired five output levels. The corresponding operationmodes of the multilevel inverter stage are described clearly asfollows:

$$v_{Cp} = v_{Ce} = V_{in} \cdot \frac{l}{(l-D)}$$

Copyright to IJAREEIE

www.ijareeie.com

(3)

6423

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

$$\frac{V_{si}}{V_{in}} = (2 + \frac{N_s}{N_p} \cdot D) \left/ (1 - D) \right|_{i=1,2}$$
(4)

.

(1) Maximum positive output, 2VS: Active switches Sa2, Sb1, and Sb3 are on; the voltage applied to the L-C output filter is 2VS.

(2) Half-level positive output, +Vs: This output condition canbe induced by two different switching combinations. Oneswitching combination is such that active switches Sa2, Sb1, Sa3are on; the other is such that active switches Sa2, Sa1, Sb3 are on.During this operating stage, the voltage applied to the L-Coutput filter is +Vs.

(3) Zero output, 0: This output condition can be formed byeither of the two switching structures. Once the left or rightswitching leg is on, the load will be short-circuited, and thevoltage applied to the load terminals is zero.

(4) Half-level negative output, -Vs: This output condition canbe induced by either of the two different switching combinations. One switching combination is such that actives witches Sa1, Sb2, Sb3 are on; the other is such that actives witches Sa3, Sb1, Sb2 are on.

(5) Maximum negative output, -2Vs: During this stage, actives witches Sa1, Sa3, and Sb2 are on, and the voltage applied to the

L-C output filter is -2Vs.In the these operations, it can be observed that the openvoltage stress of the active power switches Sa1, Sa3, Sb1, Sb3 areequal to input voltage VS; moreover, the main active switchesSa2 and Sb2 are operated at the line frequency. Hence, theresulting switching losses of the new topology are reduced naturally, and the overall conversion efficiency is improved.To verify the feasibility of the single-phase five-levelinverter, a widely used software program PSIM is applied to simulate the circuit according to the previously mentioned operation principle. The control signal block is shown in Fig. 4;m(t) is the sinusoidal modulation signal.

$$S_{aj} = \begin{cases} 1 & , S_{aj} ON \\ 0 & , S_{aj} OFF \end{cases}, j = 1, 2, 3$$
$$S_{bj} = \begin{cases} 1 & , S_{bj} ON \\ 0 & , S_{bj} OFF \end{cases}, j = 1, 2, 3$$

(5)

Both *Vtri1* and *Vtri2* are the two triangular carrier signals. The peak value and

frequency of the sinusoidal modulation signal are given as mpeak=0.7 and fm=60Hz, respectively. The peak-to-peak value

of the triangular modulation signal is equal to 1, and theswitching frequency *ftri1* and *ftri2* are both given as 1.8kHz.The two input voltage sources feeding from the high step-upconverter is controlled at 100V, i.e. Vs1=Vs2=100V. Thesimulated waveform of the phase voltage with five levels isshown in Fig. 5. The switch voltages of *Sa1*, *Sa2*, *Sa3*, *Sb1*, *Sb2*, and *Sb3* are all shown in Fig. 6. It is evident that the voltagestresses of the switches *Sa1*, *Sa3*, *Sb1*, and *Sb3* are all equal to100V, and only the other two switches *Sa2*, *Sb2* must be 200Vvoltage stress.

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

Sal	S _{a2}	S _{a3}	Sb1	S _{b2}	S _{b3}	V _{AB}
0	1	0	1	0	1	$2V_S$
0	1	1	1	0	0	V_S
1	1	0	0	0	1	V_S
1	1	1	0	0	0	0
0	0	0	1	1	1	0
1	0	0	0	1	1	$-V_S$
0	0	1	1	1	0	$-V_S$
1	0	1	0	1	0	-2V _S

Table - I Switching Combination

C. Comparison with CCHB inverter

The average switching power loss Ps in the switch causedby these transitions can be defined as where tc(on) and tc(off) are the turn-on and turn-off crossoverintervals, respectively; VDS is the voltage across the switch; and Io is the entire current which flows through the switch. Compared with the CCHB circuit topology as shown in Fig.7, the voltage stresses of the eight switches of the CCHB inverter are all equal to Vs. For simplification, both the proposed circuit and CCHB inverter are operated at the same turn-on and turn-offcrossover intervals and at the same load Io. Then, the averages witching power loss Ps is proportional to VDS and fsas According to Eq. (8), the switching losses of the CCHB inverter from eight switches can be obtained as Similarly, the switches Sa2, Sb2 can only be activated twice in aline period (60Hz) and the switching frequency is larger thanthe line frequency (fs >> fm), the switching losses of the proposed circuit is approximated to 4Vsfs. Obviously, theswitching power loss is nearly half that of the CCHB inverter. Considering the harmonics in the inverter output voltageVAB, the amplitude of the fundamental and harmoniccomponents in the output voltage VAB are calculated by PSIMsoftware. The phase shift PWM technique is adopted for theCCHB Inverter. Both of the CCHB multilevel inverter and thestudied multilevel inverter are operated in the same switching frequency 18kHz, the samemodulation index ma ,the same input voltage VS=100V andoutput L-C filter, Lo=420uH, Co=4.7uF.

III. SIMULATION RESULTS

To facilitate understanding of the operating principle and as verification, a Simulation system with a high step-up DC/DC converter stage and the simplified multilevel DC/AC stage are built with the corresponding parameters listed. The specifications of the two preceding high step-up DC/DC converters are (a) input voltage 30V; (b) controlled output voltage 100V; and (c) switching frequency 85kHz. The corresponding specifications of the simplified multilevel DC/AC inverter stage are (1) output power, Po=230W; (2) input voltage, Vs=100V; (3) output voltage, vo=110Vrms; (4) line frequency, fm=60Hz; (5) switching frequency, fs=40kHz; and (6) peak modulation index, mpeak=0.76. For better understanding, the guidelines and considerations of the DC-link capacitance and the use of an L-C output filter at the output are described as follows.

A. Sizing DC-link capacitor

For the discussed two-stage DC/AC conversion system, the DC-link capacitance is sized to keep voltage fluctuations within specified limits to prevent over-voltage on the DC bus.

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

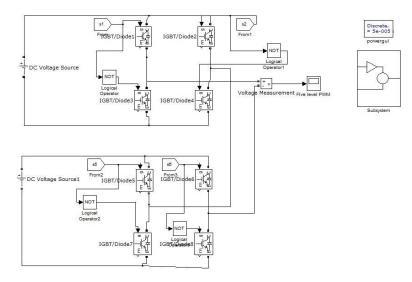
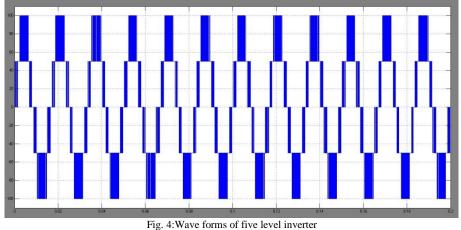



Fig. 3:Simulation diagram of five level inverter

To calculate the relationship between capacitance and voltage limits, the net power flowing into the bus capacitor, i.e. DClink capacitor, is expressed as where *PDER* is the total output power of the DER modules, and *Vo* and *Io* are the peak AC-side quantities.

Assuming a steady-state operating condition whereby the net average power flow is zero, the instantaneous power flow into the bus capacitance *Cbusis PDER* cos 2wt. Integrating this expression provides the energy, and equating the peak change in energy stored in the capacitor with where *Vbus*,max is the peak bus voltage, *Vbus*,min is the minimum value of bus voltage, and *Cbus=Cbus1×Cbus2/(Cbus1+Cbus2)*. The voltage deviation is given by For the discussed two-stage conversion system in this study, a design limit of maximum $\Delta Vbus=10V$ is chosen to keep the bus voltage well within the voltage rating of the semiconductors, which now is typically 200V, and to minimize the third-order harmonic occurring on the output voltage.

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

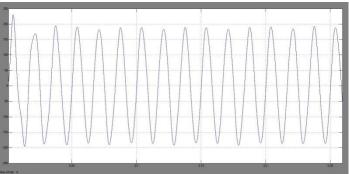


Fig. 5:Output Voltage of five level inverter with filter

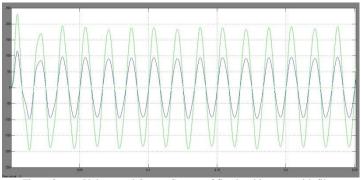


Fig. 6:Output Voltage and Output Current of five level inverter with filter

For the above-mentioned considerations, the capacitance *Cbus1* and *Cbus1* are now chosen as 2000μ F, respectively. It should be noted that, for simplification, the bus capacitance for this case is only selected based on voltage deviation specifications.

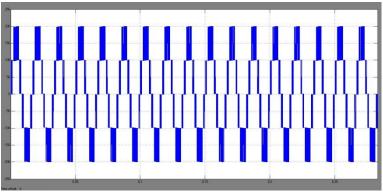


Fig. 6:Output Voltage of five level inverter without filter

B. Choice of output L-C filter

The output L-C filter is tuned to below the switching frequency as follows: where *fs* is the switching frequency, and *Lo* and *Co* are inductance and capacitance of the output L-C filter, respectively. The Simulation results of the simplified single-phase inverter stage operated at the rated output power are shown in Figs. 8-10.

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

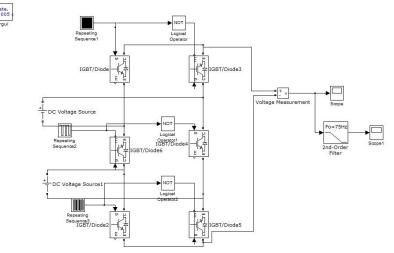


Fig. 7:Simulation diagram of Seven level inverter

Figs. 8-9 show the PWM signals and voltage stresses of the six power switches for the five-level inverter, respectively. It is evident that the voltage stresses of the switches *Sa1*, *Sa3*, *Sb1*, and *Sb3* are all equal to 100V, and only the other two switches *Sa2*, *Sb2* must be 200V voltage stress.

5	5 · · · · · · · · · · ·										
o		_ <u></u>									
.5				i.	j		i				
5		-		1			-		-		
0											<u> </u>
5					i		1		1		
5											
0											L
5		40									
0											
5											
5				1			1		_		
0		Ļ.	<u> </u>						<u> </u>	<u> </u>	L
5		1		i			- i				
5				!							!
0		<u> </u>									
.52		3		4	5		6		7		8

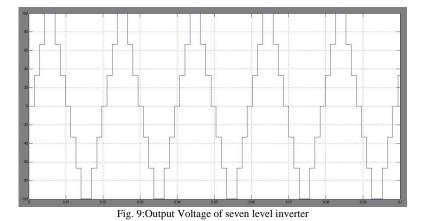

Fig. 8:Switching Pulses of seven level inverter

Fig.9 shows steadystate waveforms of output voltage vo, output current io, and the voltage applied to L-C output filter terminal *VAB*, respectively, for the inverter with a resistive load of 51 Ω .

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

As can be seen in Fig. 8, the waveform shows the desired five voltage levels: 200V, 100V, 0V, -100V, and -200V. The measured RMS value of *vo* is approximately 110V, while the measured RMS value of *io* is approximately 2.12A. The conversion efficiency of the implemented inverter and THD of the output voltage measured in this case are approximately 96% and 3%, respectively.

IV. CONCLUSION

This work reports a newly-constructed single-phase multistring multilevel inverter topology that produces a significant reduction in the number of power devices required to implement multilevel output for DERs. The studied inverter topology offer strong advantages such as improved output waveforms, smaller filter size, and lower EMI and THD. Simulation results show the effectiveness of the proposed solution. This paper presents a new Novel Asymmetrical Multistring multilevel converter. Here we proposed single phase and three phase multistring multilevel inverters, the proposed converter produces more voltage levels with less number of switches compared to H- bridge configuration. This will reduce the switching losses and number of gate drivers and protection circuits which in turn reduces the cost and complexity of the circuit. Finally a three phase model of the proposed circuit is shown and simulation results are presented.

REFERENCES

- [1] Y. Li, D. M. Vilathgamuwa, and P. C. Loh, "Design, analysis, and realtime testing of a controller for multibusmicrogrid system," *IEEE Trans. Power Electronics*, vol. 19, no. 5, pp. 1195-1204, Sept. 2004.
- [2] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids," IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78-94, Jul./Aug. 2007.
- [3] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, "Microgrids management," *IEEE Power and Energy Magazine*, vol. 6, no. 3, pp. 54-65, May/Jun., 2008.
- [4] C. L. Chen, Y. Wang, J. S. Lai, Y. S. Lee, and D. Martin, "Design of parallel inverters for smooth mode transfer microgrid applications," *IEEE Trans. Power Electronics*, vol. 25, no. 1, pp. 6-15, Jan. 2010.
- [5] C. T. Pan, C. M. Lai, and M. C. Cheng, "A novel high step-up ratio inverter for distributed energy resources (DERs)," IEEE International Power Electronics Conference-ECCE Asia, pp.1433-1437, 2010.
- [6] C. T. Pan, C. M. Lai, and M. C. Cheng "A novel integrated single-phase inverter with an auxiliary step-up circuit for low-voltage alternative energy source application," *IEEE Trans. Power Electronics*, vol. 25, no. 9, pp. 2234-2241, Sep. 2010.
- [7] F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," *IEEE Trans. Power Electronics*, vol. 19, no. 5, pp. 1184-1194, Sep. 2004.
- [8] D. G. Infield, P. Onions, A. D. Simmons, and G. A. Smith, "Power quality from multiple grid-connected single-phase inverters," *IEEE Trans. Power Delivery*, vol. 19, no. 4, pp. 1983-1989, Oct. 2004.
- S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg "A review of single-phase grid-connected inverters for photovoltaic modules," *IEEE Trans. Industry Applications*, vol. 41, no. 5, pp. 1292-1306, Sep./Oct. 2005.
- [10] O. Lopez, R.Teodorescu, and J. Doval-Gandoy, "Multilevel transformerless topologies for single-phase grid-connected converters" IEEE Industrial Electronics Conference, pp. 5191-5196, 2006.
- [11] T. Kerekes, R. Teodorescu, and U. Borup, "Transformerless photovoltaic inverters connected to the grid," *IEEE Applied Power Electronics Conference*, pp. 1733-1737, 2007.
- [12] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, "A new simplified multilevel inverter topology for DC-AC conversion," *IEEE Trans. Power Electronics*, vol. 21, no. 5, pp. 1311-1319, Sep. 2006
- [13] N. A. Rahim and J. Selvaraj, "Multistring five-level inverter with novel PWM control scheme for PV application," *IEEE Trans. Power Electronics*, vol. 57, no. 6, pp. 2111-2123, Jun. 2010

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 12, December 2013

- [14] C. T. Pan, W. C. Tu, and C. H. Chen, "A novel GZV-based multilevel single phase inverter," *Taiwan Power Electronics conference*, pp. 1391-1396, Sep. 2010.
- [15] W. Yu, J. S. Lai, H. Qian, C. Hutchens, J. Zhang, G. Lisi, A. Djabbari, G. Smith, and T. Hegarty, "High-efficiency inverter with H6-type configuration for photovoltaic non-isolated AC module applications," *IEEE Applied Power Electronics Conference and Exposition*, pp. 1056-1061, 2010.
- [16] S. Vazquez, J. I. Leon, J. M. Carrasco, L. G. Franquelo, E. Galvan, M. Reyes, J. A. Sanchez, and E. Dominguez, "Analysis of the power balance in the cells of a multilevel cascaded H-bridge converter," *IEEE Trans. Industrial Electronics*, vol. 57, no. 7, pp. 2287-2296, Jul. 2010.
- [17] S. Daher, J. Schmid, and F. L.M. Antunes, "Multilevel inverter topologies for stand-alone PV systems," *IEEE Trans. Industrial Electronics*, vol. 55, no. 7, pp. 2703-2712, Jul. 2008.

BIOGRAPHY

B. Suresh Kumar born in India. Hereceived B.Tech (Electrical and Electronics Engineering) degree from PrakasamEngineering College Kandukur, JNTU Kakinada. He is pursuing M.Tech (Power Electronics) in Chirala Engineering College at Chirala affiliated to JNTU Kakinada. His area of research is in Power Electronics and Solar Power Systems.

GantaJoga Raowas born in srikakulam, Andhra Pradesh, India, in 1983.He received B.Tech (Electrical & Electronics Engineering)degree from Kamala Institute of Technology & Science, Jawaharlal Nehru Technological University, Hyderabad, India, in 2004 and the M.Tech degree from Jawaharlal Nehru Technological University College, Hyderabad ,India in 2007. He is working as associate professor in the department of Electrical &Electronics Engineering in Chirala Engineering College, Chirala, Andhra Pradesh. His area of interest Includes power electronics, electrical machines and drives, Digital control systems, HVDC.Mr. G.JOGA RAO is a Life Member of the Indian Society for Technical Education (LMISTE).