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Abstract: This paper presents the design and implementation of a low power pipelined 32-bit RISC Processor. The 

various blocks include the Fetch, Decode, Execute and Memory Read / Write Back to implement 4 stage pipelining. In 

this paper, low power technique is proposed in front end process.  Modified Harvard Architecture is used which has 

distinct program memory space and data memory space. Low power consumption helps to reduce the heat dissipation, 

lengthen battery life and increase device reliability. To minimize the power of RISC Core, clock gating technique is 

used which is an efficient low power technique. Verilog Language is used for coding purpose.7-SEG LEDs are 

connected to the RISC IO interface for testing purpose of all the instructions defined that is floating point numbers as 

well as integer values.The proposed architecture is  then simulated using Modelsim. Dynamic power consumption is 

calculated using Altera powerplay analyser and then implementation is done using Altera Quartus II on Altera FPGA 

board. 
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I.INTRODUCTION 

Low power has emerged as a principle theme in today’s electronics industry. The need for low power has caused a 

major paradigm shift where power dissipation has become an important consideration as performance and area. RISC is 

termed as Reduced Instruction Set Computer, computer arithmetic-logic unit that uses a minimal instruction set, 

emphasizing the instructions used most often and optimizing them for the fastest possible execution. This processor 

will follow the RISC architecture because it supports a predefined set of instructions. In this all the instructions have 

same length. Software for RISC processors must handle more operations than traditional CISC [Complex Instruction 

Set Computer] processors, but RISC processors have advantages in applications that benefit from faster instruction 

execution [1]. RISC processor design emphasizes on load/store architecture. The operations performed on chip registers 

are much faster than on memory due to the difference in the time taken to access the registers as well as memory. The 

access to memory is done only through load and store instructions. Due to faster execution, the operations are 

performed on the data present in the registers. They are also less costly to design, test, and manufacture [6]. 

 

The basic architecture of RISC Pipeline Processor is shown in fig 1 [4],[5]. 
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Fig. 1 Basic architecture of RISC Processor 

 

II. PROPOSED SYSTEM 

The RISC Processor is designed using pipelined architecture. In this 4-stage pipelining is implemented, with this the 

speed as well as performance is increased. The four stages of pipeline are fetch, decode, execute and memory 

read/write back[1][6].During the design process, low power technique is included. For increasing the performance, 

latch based clock gating is used. Clock gating is most popular method used for reducing dynamic power consumption 

of clock signals. Power is mainly consumed by Combinatorial logic whose values are changing on each clock edge, 

flip-flops and by clock buffer tree in design. When the clock signal is not required to a particular module for some 

period, gating logic comes into picture to turn off the clock. Clock gating saves the power by reducing unnecessary 

switching activities. Gating logic is added in to the design by Integrated clock gating method(inserted into the design 

manually by the RTL designer)[2]. 

 

Processors with pipelining consists of modules internally which can work on microinstructions separately. Each stage 

in the pipeline is linked to next stage by flip-flops, through this the overall processing time is reduced as output of 

previous stage acts as an input to next stage. An instruction pipeline is said to be fully pipelined if it accept a new 

instruction every clock cycle. 

The  proposed processor is 32 bit low power RISC processor with pipelining architecture which gets instructions on a 

regular basis using dedicated buses to its memory, executes all its native instructions in stages with pipelining. It can 

communicate with external devices with its dedicated parallel IO interface. 

 

A. Types of Instructions 

There are basically three types of instructions namely Arithmetic and Logical Instructions (ALU instructions), 

Load/Store instructions and Branch instructions[1] 

 

1. ALU Instructions: 

Arithmetic operations either take two registers as operands or take one register and a sign extended immediate value as 

an operand. Some arithmetic instructions are addition, subtraction, multiplication, division, increment, decrement. The 

result is stored in a third register. Logical operations such as and ,or, xor do not usually differentiate between 32-bit and 

64-bit. Other logical instructions are nand, nor, not, xnor, right shift, left shift etc. 
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2. Load/Store Instructions: 

By taking a register (base register) as an operand and a 16-bit immediate value and the sum of the two will create the 

effective address. A second register acts as a source in the case of a load operation. In the case of a store operation, the 

second register contains the data to be stored.  

 

3. Branches and Jumps: 

Conditional branches are transfers of control. A branch causes an immediate value to be added to the current program 

counter. Some common branch instructions are BZ (Branch Zero), BRC (Branch if Carry), JMP (Jump Instruction), 

JMPZ (Jump when zero), Cmp(compare two operands and based on this carry flag is updated with one or zero) etc. 

 

III.  ARCHITECTURE 

The Proposed architecture consists of  

 Instruction Fetch(IF) 

 Instruction Decode(ID) 

 Execution unit(EX) 

 Memory unit(MU) 

 Memory read/write unit 

 Low Power unit 

 Four general purpose registers namely register R0, register R1, register R2 and register R3 

 Floating point unit 

 
Fig. 2 Proposed Architecture of Low Power Pipelined RISC Processor 

 

B. Instruction Fetch 

This stage consists of Program counter, Instruction Memory, and the Branch Decide unit. 
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1. Program Counter: 

The program counter (PC) contains the address of the instruction that will be fetched from the Instruction memory 

during the next clock cycle. Normally, the PC is incremented by one during each clock cycle unless a branch 

instruction is executed. When a branch instruction is encountered, the PC is incremented by the amount indicated by 

the branch offset.  

 

2. Instruction Memory: 

 The Instruction Memory contains the instructions that are executed by the processor. The input to this unit is a 9-bit 

address from the program counter and the output is 9-bit instruction word. 

 

3. Branch Decide Unit: 

 The Branch Decide Unit is responsible for determining whether a branch is to take place or not based on the 2-bit 

Branch signal from the control Unit and the Zero flag from the Arithmetic and Logic Unit (ALU).  

 

B. Instruction Decode  

This stage consists of the Control Unit, Register File. 

 

1. Control Unit: 

 The control unit generates all the control signals needed to control the coordination among the entire component of the 

processor. This unit generates signals that control all the read and write operation of the register file, and the Data 

memory. It is also responsible for generating signals that decide when to use the multiplier and when to use the ALU, 

and it also generates appropriate branch flags that are used by the Branch Decide unit. 

 

2. Register file: 

This is a two port register file which can perform two simultaneous read and one write operation. It contains four 32-bit 

general purpose registers. The registers are named R0 through R4.  

 

C. Execute 

 This stage consists of the Branch Adder, Arithmetic Logic Unit (ALU), and the ALU Control Unit. 

 

1. Branch Adder: 

 The branch adder adds the 26-bit signed branch offset with the current value of the PC to calculate the branch target. 

The 26-bit offset is provided by the branch instruction. The output of this unit goes to the PC control multiplexer which 

updates the PC with this value only when a branch is to be taken. 

 

2. Arithmetic Logic Unit (ALU): 

 The ALU is responsible for all arithmetic and logic operations that take place within the processor. These operations 

can have one operand or two, with these values coming from either the register file or from the immediate value from 

the instruction directly. All operations are done according to the control signal coming from ALU control unit. 

 

3. ALU Control Unit: 

 This unit is responsible for providing signals to the ALU that indicates the operation that the ALU will perform. The 

input to this unit is the 5-bit opcode and the 2-bit function field of the instruction word. It uses these bits to decide the 

correct ALU operation for the current instruction cycle. This unit also provides another set of output that is used to gate 

the signals to the parts of the ALU that it will not be using for the current operation. This stage consists of some control 

circuitry that forwards the appropriate data, generated by the ALU or read from the Data Memory, to the register files 

to be written into the designated register. 

 

D. Memory 

 This stage consists of the Data/Instruction Memory module 

1. Data/Instruction Memory: 
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 The architecture used is Modified Harvard architecture. This module supports 512 depth of 32-bit data words. The 

Load and Store instructions are used to access this module. Finally, the Memory Access stage is where, if necessary, 

system memory is accessed for data.  Also, if a write to data memory is required by the instruction it is done in this 

stage.  In order to avoid additional complications it is assumed that a single read or write is accomplished within a 

single CPU clock cycle. 

The architecture uses dynamic branch prediction as it reduces branch penalties under hardware control [1],[5]. The 

Prediction is made in Instruction Fetch stage of the pipeline. Thus branch prediction buffer is indexed by the lower 

order bits of the branch address in Instruction Fetch. It is low for branch not taken and high for branch taken and branch 

target can be accessed as soon as the branch target address is computed. Branch Target cache is a branch prediction 

buffer with addition information as it has an address tag of a branch instruction and stores the target address. Thus BTC 

determines if the instruction is a branch and, if branch will be taken and, if branch prediction is taken, and what will be 

the target address. If these requirements are met the processor can initiate the next instruction access as soon as the 

previous access is complete. Thus the main operation of BTC is that during the IF stage, the lsbs of the PC are used to 

access the BTC and if the msbs of the PC match the target then the entry is valid. If the branch is predicted as taken, the 

predicted target address is used to access the I-cache during the next cycle. 

 

2. Modified Harvard architecture: 

The Modified Harvard architecture is a variation of the Harvard computer architecture that allows the contents of the 

instruction memory to be accessed as if it is data .Most modern computers that are documented as Harvard architecture 

are, in fact, Modified Harvard architecture. The modifications are to loosen the strict separation between code and data, 

while still supporting the higher performance concurrent data and instruction access of the Harvard architecture [1]. 

The most common modification builds a memory hierarchy with a CPU cache separating instruction and data. This 

unifies all except small portions of the data and instruction address spaces, providing the Von Neumann model. The 

programmers never need to be aware of the fact that the processor core implements a (modified) Harvard architecture, 

although they benefit from its speed advantages. Only programmers who write instructions into data memory need to 

be aware of issues such as cache coherency  and executable space protection. 

E. Low power unit 

The power reducing technique that has been explored in this architecture is clock gating. Clock gating is a method 

which prevents the clock signal reaching the various modules when there is no demand. The non availability of clock 

signal prevents the register or flip-flops from changing their states. As a result the input to any combinational circuit 

remains unchanged and thus no switching activity takes place. Most of the power dissipation results from switching 

activity, clock gating greatly reduces the power consumption [7],[10]. 

F. Floating point unit 

Floating point is the most common representation of real numbers on computers. Floating-point employs a sort of 

"sliding window" of precision appropriate to the scale of the number. This allows it to represent numbers from 

1,000,000,000,000 to 0.0000000000000001 with ease [3].  

1. Formats:  

IEEE floating point number  have three basic components: the sign, the exponent, and the mantissa. The mantissa is 

composed of the fraction and an implicit leading digit. The exponent base (2) is implicit and need not be stored. There 

are two basic number formats in IEE754, single precision, and double precision.  In this paper single precision format is 

used. The number of bits for each field are shown (bit ranges are in square brackets): 

Format Sign Exponent Mantissa 

Single Precision 1[31] 8[30-23] 23[22-0] 

Double Precision 1[63] 11[62-52] 52[51-0] 

 

Table I Formats Of  IEEE Floating Point Numbers 
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2. General format: 

 (±1)S × (1+F) × 2E 

Where 

 S = sign, 0 for positive, 1 for negative 

 F = fraction (or mantissa) as a binary integer,1+F is called significand 

 E = exponent as a binary integer, positive or negative (two’s complement) 

  

3. Exceptions: 

The IEEE standard defines five types of exceptions that should be signalled through a one bit status flag when 

encountered[3].In this paper we are concentrating only on four of them. 

 Invalid Operation 

Some arithmetic operations are invalid, such as a division by zero or square root of a negative number. The result of an 

invalid operation shall be a NaN (Not a number). There are two types of NaN, quiet NaN (QNaN) and signaling NaN 

(SNaN). They have the following format, where s is the sign bit: 

QNaN = s 11111111 10000000000000000000000 

SNaN = s  11111111  00000000000000000000001 

The result of every invalid operation shall be a NaN string with a QNaN or SNaN exception. The following are some 

arithmetic operations which are invalid operations and that gives a result  a QNaN string and that signal a QNaN 

exception: 

  Any operation on a NaN 

  Addition or subtraction: ∞ + (−∞) 

  Multiplication: ± 0 × ± ∞ 

 Division: ± 0/ ± 0 or ± ∞/ ± ∞ 

 Square root: if the operand is less than zero 

 

 Inexact 

This exception should be signalled whenever the result of an arithmetic operation is not exact due to the restricted 

exponent and/or precision range. 

 Underflow 

Two events cause the underflow exception to be signalled, tininess and loss of accuracy. Tininess is detected after or 

before rounding when a result lies between ±2Emin. Loss of accuracy is detected when the result is simply inexact or 

only when a renormalizations loss occurs. The implementer has the choice to choose how these events are detected. 

They should be the same for all operations. The implemented FPU core signals an underflow exception whenever 

tininess is detected after rounding and at the same time the result is inexact. 

 Overflow 

The overflow exception is signalled whenever the result exceeds the maximum value that can be represented due to the 

restricted exponent range. It is not signalled when one of the operands is infinity, because infinity arithmetic is always 

exact. Division by zero also doesn’t trigger this exception. 

G. Instruction Set 

The instruction set used in this architecture consists of arithmetic instructions, logical instructions, branch instructions 

and memory instructions. It will have short(9-bit) and long(18-bit) instructions. For all arithmetic and logical 

operations 9-bit instructions are used and for all memory and branch operations 18-bit instructions are used. It will have 

special instructions to access external ports. 
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Short Instruction           

      

Opcode  Source  Destination  

0 1 2 3 4 5 6 6 8 

Long Instruction  

Opcode  Source Destination Address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

 

H. Addressing Modes Used 

Addressing modes are aspects of the instruction set architecture in most central processing unit (CPU) designs [1]. The 

different addressing modes in a instruction set architecture define how machine language instructions in that 

architecture identify the operand (or operands) of each instruction. An addressing mode specifies how to calculate the 

effective memory address of an operand by using information held in registers and/or constants contained within a 

machine instruction or elsewhere. The various addressing modes used in proposed method are  

 

 Direct addressing mode 

 Immediate addressing mode  

 PC-relative addressing mode (specifically for branch instruction) 

 Register  addressing mode 

 

I. Features of proposed architecture 

 It is 4- stage low power pipelining processor. 

 It provides hazard detection unit to determine when stall must be added. 

 Each functional unit can only be used once per instruction. 

 Each functional unit has to be used at the same stage as all other instructions.  

 Pipeline Control: that is each stage control signal depends only on the instruction that is currently in that stage. 

 It provides halt support. 

 It is capable of providing high performance. 

 Pipelining would not flush when branch instruction occurs as it is implemented using dynamic   branch 

prediction. 

 Take cares of order-of-execution 

 

IV.  SIMULATION RESULTS 

Modelsim is used for simulation and results have been verified. The complete project has been developed on FPGA, 

Altera development and education board 2 platform, which has different testing and debugging scopes such as push 

button switches, toggle switches, LCD and LEDs. So all the testing has been carried out on the board. 7-SEGMENT 

LEDs is connected to RISC IO Interface for testing purpose. Different ouput patterns have been generated with RISC 

instructions, and are outputted on 7-SEGMENT LEDs.In Altera family, in order to implement the design the 

“QUARTUS-II” has been chosen and in the family “CYCLONE II”, the package used is “EP2C35F672C6” on Altera 

DE2 board. 
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The RTL schematic of the proposed method is shown in fig 3 

 

 
Fig. 3 RTL Schematic 

 

 

 
Fig. 4 Simulation Waveform 

 

http://www.ijareeie.com/


 
 ISSN (Print)  : 2320 – 3765 
ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 8, August 2013 
 

 

Copyright to IJAREEIE                           www.ijareeie.com  3755 

 

A. Design Summary, Simulation and Synthesis result 

 

1. Design Summary: 

  The device  utilisation summary is shown in table II which gives the detail of availability along with used number of 

resources in % using Xilinx ISE 13.1 web pack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II  Device Utilization Summary 

2. Power Analyser Summary: 

 
Fig. 5  Powerplay Analyser summary without Clock gating 

Device Utilization Summary 

Logic Utilization Used  Available Utilization  

Number of Slice registers 16,693 93,120 17% 

Number of Slice LUTS 18,081 45,560 38% 

Number used as Logic 18,075 45,560 38% 

Number used as  Memory 0 16,720 0% 

Number of occupied Slices 6,058 11,640 52% 

Number with an unused Flip Flop 9,640 18,135 53% 

Number with an unused LUT 54 18,135 1% 

Number of fully used LUT-FF pairs 8,441 18,135 46% 
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Fig. 6  Powerplay Analyser summary with Clock gating 

V. CONCLUSION 

In this paper 4-stage Low Power Pipelined 32-bit RISC processor based on FPGA system is designed with Verilog 

coding adopted.  Architecture is devised in order to felicitate the writing codes in Verilog. The Verilog coding synthesis 

issues play a vital role in speed –area optimality because RTL schematic depends heavily on coding flow in Verilog. 

The RISC Processor design is simulated and implemented on hardware and verified for its Arithmetic operations of 

both fixed and floating point numbers, Branch and Logical Functions. Arithmetic unit has been designed to perform 

four operations addition, subtraction, multiplication, and division on floating point numbers. IEEE 754 standard based 

floating point representation has been used. After synthesis we got the less no of logic resource utilization comparing 

the available resources which is shown in the device utilization summery table. Using the Altera Quartus II, the power 

consumed is calculated and comparision of dynamic power consumption with Clock gating and without Clock gating  

is done and the results has been shown in power analyser summary. 
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