

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3598

ANALYSIS OF SYNTHESIS ISSUES ABOUT

DESIGNING DSP DEVICES

Akash Verma
1
, B.S. Rai

2

M.Tech. (Pursuing), Dept. of Electronics Engineering, MMMEC, Gorakhpur, India
1

Head of Dept., Dept. of Electronics Engineering, MMMEC, Gorakhpur, India
2

ABSTRACT: This paper discusses the issues related to the synthesizing the designs of DSP devices to FPGA. The high

level codes used for synthesis input, are in VHDL. The central issues behind the designs are synthesizable or not are, used

HDL libraries and data types. All the issues and solutions are illustrated using 32-Point Fast Fourier Transform. In the

beginning, the IEEE fixed point package (fixed_pkg) is used for designing FFT-32 then whole logic is designed using

single IEEE package (STD_LOGIC_1164) which is absolutely synthesizable to FPGA. For implementing DSP algorithms

using ‘STD_LOGIC_1164’, ‘real type’ data structure is represented by array of bits, that is ‘bit_vector’. Algorithms for real

type addition, subtraction and multiplication are developed using array of bits which will fulfill the function of complex and

real arithmetic. DSP algorithms implemented through this design method are complete synthesizable and can be

implemented with very high degree of precision.

Keywords: DSP, FFT, FPGA, Fixed_Pkg, Radix-2 algorithm, STD_LOGIC_1164, Synthesis, VHDL, Virtex-5.

I.INTRODUCTION

This paper proposes the issues and solutions of synthesis problems of DSP designs to FPGA [6]. DSP algorithms which are

designed on VHDL do not guarantee that they are synthesizable [8] to FPGA. It may be possible that these HDL designs do

compile and simulate properly on HDL simulators and compilers but still it is not sure that they are completely

synthesizable to FPGA [5]. There are several issues which restricts these codes from synthesizing [7]. The FPGA vendors

provide their software tools for synthesizing the HDL codes. For synthesizing the HDL design, the libraries and packages

used must be supported by these tools [8]. Data type used for HDL designing of DSP algorithm is also an important factor

for design synthesis [3]. In this paper, radix-2 based 32-point Fast Fourier Transform algorithm [4] is synthesized to Virtex-

5 FPGA. VHDL design of FFT used for synthesis is developed by following two different ways:

1) Using IEEE fixed point package, ‘fixed_pkg’[2].

2) Using IEEE package, ‘STD_LOGIC_1164’ [5].

Data types of DSP algorithm is mostly of ‘signed real’ type [3]. VHDL provides various fixed point and floating point data

types for representing real type data [1]. Since floating point data type is not efficient for synthesizing to FPGA so fixed

point data type is used. For implementing DSP algorithm using only IEEE package, ‘STD_LOGIC_1164’, a method is

developed for representing real data type by array of bits. All real arithmetic such as multiplication, addition and

subtraction are implemented by specialized algorithms. These algorithms manipulate the bit_vector to implement the real

arithmetic.

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3599

II.RADIX-2 ALGORITHM

It is one of the simplest Fast Fourier Transform algorithm in which a Butterfly structure is replicated to get higher order

FFT.

Fig. 1: Butterfly structure

In replicated butterfly structure we change the values of weighted coefficients ‘w’ as per the position of Butterfly. Radix-2

algorithm may be implemented by either decimation in time or decimation in frequency. In decimation in time algorithm

we shuffle the order of input while in decimation in frequency algorithm we shuffle the output. Here decimation in time

algorithm is used for implementing 32-Point FFT.

 III.SIMULATION OF FFT DESIGN USING IEEE FIXED POINT PACKAGE, ‘FIXED_PKG’

IEEE accepted fixed point Package; ‘fixed_pkg’ in VHDL-2008 [1]. This package has powerful operators and functions

that specially suits for designing DSP algorithms. 32-Point FFT, radix-2 algorithm is first designed on VHDL using this

package then HDL design is comiled and simulated on ModelSim PE Student Edition 10.2a.

A. SIMULATION OF BUTTERFLY STRUCTURE

Here (ar, ai) and (br, bi) are two fixed point real inputs and (yr0 , yi0) and (yr1, yi1) are outputs of Butterfly structure. (wr,

wi) is the weighted coefficient of Butterfly structure. Simulation result of Butterfly component is shown in the following

figure.

Fig. 2: Simulation result of Butterfly

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3600

B. SIMULATION OF 32-POINT FFT

In this 32- Point FFT design, above simulated Butterfly is used as component. Butterfly component is used in five stages

and in each stage sixteen instances of Butterfly are used. Here xr and xi are real and imaginary parts of input x. Similarly

yr, yi and wr, wi are real and imaginary parts of y and w respectively. There are 32 complex inputs, 32 complex outputs and

17 different weighted coefficients. Simulation result of 32-Point FFT is shown in the following figure.

Fig. 3: Simulated result of 32-point FFT

C. ISSUES ON SYNTHESIZING THIS DESIGN

Fixed point package, fixed_pkg is brought to VHDL-2008 by IEEE. It is said that the designs using this package will be

synthesizable. All the data structures used in this package are fixed point.

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3601

This package contains powerful operators and functions which makes it very efficient in designing DSP algorithm. But, still

this package is not absolute synthesizable because it is not fully supported by synthesizer tools.

IV.IMPLEMENTATION OF FFT USING IEEE PACKAGE, ‘STD_LOGIC_1164’ ALONE

For implementing the DSP algorithms using IEEE package, ‘STD_LOGIC_1164’ alone, a data type is required which may

implement both the real and complex numbers. Its real data type is of floating point, so it will not be synthesizable. So a

method is developed which represent the real and complex numbers by ’bit_vector’.

A. REPRESENTATION OF REAL AND COMPLEX NUMBERS BY ‘BIT_VECTOR’

‘A’ is an array of bits of length ‘L’ in which M bits represents fraction part and N bits represents whole part.

A=b(N-1)…..b2b1b0 b1…..b(M-1)bM

The numbers N and M are chosen depending on the precision and range of real number.

Here important point is that the software and FPGA will treat this array of bits ‘A’ as simply a bit vector of length ‘M+N’.

B. ALGORITHMS FOR ARITHMETIC OPERATION ON THIS DATA STRUCTURE

Specialized algorithms are developed which will operate on above defined data structure and manipulate the array of bits in

such a way that they will fulfill the functions of complex and real numbers. For the 32-Point FFT calculation, addition,

subtraction and multiplication algorithms are used. Multiplier algorithm is explained in following context.

C. ALGORITHM FOR MULTIPLIER

This multiplier is designed for multiplication operation in FFT design. It takes two bit vectors as input and gives a bit vector

as output with its length equal to multiplicand.

Fig. 4: Flow Chart for Multiplier Algorithm

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3602

D. SYNTHESIS AND SIMULATION OF FFT USING IEEE PACKAGE, ‘STD_LOGIC_1164’

These results are compiled and simulated on Modelsim PE Student Edition 10.2a and synthesized on Xilinx ISE 10.1

design suite. For design simulation ‘Xilinx Virtex-5’ FPGA is used.

Table I: Target FPGA Properties

Target FPGA Properties

Family Virtex5

Device XC5VLX30

Package FF324

Speed -3

1. SIMULATION OF BUTTERFLY STRUCTURE

Simulated result is shown in the following figure. As it was shown in figure-1, it has two complex inputs, two complex

outputs and one complex weighted coefficient. Each input and output is of 23 bits length and coefficient is of 12 bits length.

Least significant 10 bits are fraction bits.

Fig. 5: simulated result of Butterfly component

2. SYNTHESIS RESULTS OF BUTTERFLY STRUCTURE

The HDL design of Butterfly is synthesized with Xilinx ISE 10.1 design suite. RTL view of Butterfly structure is shown in

the following figure. This RTL structure is automatically generated after synthesizing the design with Xilinx design suite.

The next is synthesis design summary of Butterfly on Virtex-5 FPGA.

 Fig. 6: RTL view of Butterfly component Fig. 7: Synthesis design summary of Butterfly component

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3603

3. TIMING SUMMARY

Maximum combinational path delay of designed FFT-32 on FPGA is 95.814ns.

Table II: Time delay of Butterfly component

Delay type Delay (ns) Delay (%)

Logic 15.522 16.0

Route 81.292 84.0

Total 95.814 100.0

4. SIMULATION OF 32-POINT FFT

In the 32-Point FFT design, above described Butterfly design is used as component. Total 80 instances of Butterfly are used

in this design.

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3604

Fig. 8: Simulated result of 32-Point FFT

5. SYNTHESIS OF 32-POINT FFT

The proposed design of 32-FFT block is synthesized using the Xilinx ISE 10.1 design suite. Thus the RTL block obtained

after synthesizing the design is shown below.

Fig. 9: Synthesized Internal RTL architecture of 32-Point FFT

From the above synthesized Internal RTL architecture it clear that whole architecture is divided in five stages and each

stage comprises sixteen instances of Butterfly, thus total eighty instances of Butterfly are visible in above shown RTL

architecture.

The next is synthesis design summary of 32-Point FFT on Virtex-5 FPGA, it shows the features of the Virtex-5 FPGA used

by Xilinx design suite for proposed work. Maximum combinational path delay: 466.732ns.

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3605

 Fig. 10: Synthesis design summary of 32-Point FFT Table III: Time delay of 32-Point FFT

V.COMPARISON OF RESULT WITH MATLAB 7.11.0.584

Simulated results of synthesizable design of 32-Point FFT using ‘STD_logic_1164’ package are compared with Matlab and

the percentage error is calculated for each output. The comparison table is shown below.

Table IV: Comparison of 32-Point FFT results with Matlab

FFT

Input

Design Output Matlab

Output

%Error

Binary(10 fraction bits) Decimal equivalent
s/n Xr Xi Yr Yi Yr Yi Yr Yi Er Ei

0 91.3428 -20.6582 1110010101100.0101101000 1101000110100.0011010001 -851.6484 -1483.7958 -851.64613 -1483.7941 0.00027 0.00011

1 -10.8271 75.999 0000110001101.1101110101 1111111010101.0100111101 397.7285 -42.69042 397.66331 -42.71583 0.01639 0.05948

2 87.5166 -123.214 0000110011011.0111011000 0001000010001.1010101000 411.4609 529.66406 411.52641 529.69893 0.01591 0.00658

3 -474.604 377.223 0000101011100.0110000100 0110001110101.1011101001 348.3789 3189.72753 347.59773 3191.11167 0.22473 0.04337

4 -14.998 -99.9619 0001000101101.1000000010 1101111000010.1001010110 557.5019 -1085.4160 557.52852 1085.55534 0.00476 0.01283

5 -10.8271 -474.604 0001001101111.0010001010 1111000000111.1110011000 623.1347 -504.10156 623.08508 -504.56483 0.00793 0.09181

6 -14.998 170.986 0011000000010.1100101101 1101111111111.1111010001 1528.793 -1024.0458 1538.68797 -1024.3272 0.64301 0.02746

7 21.4551 -382.869 1110100000101.0001010110 0000010000000.1001101110 -762.9160 128.60742 -763.26689 129.02958 0.04597 0.32718

8 91.3428 -20.6582 1111011011110.0110010101 1111001100100.0011001110 -289.6044 -411.79882 -289.60446 -411.79806 0.00001 0.00018

9 -10.8271 75.999 0000000010011.1000011001 1100100100101.1111001011 19.52441 -1754.0517 19.40969 -1754.5238 0.59104 0.02690

10 -7.40234 0.743164 1110101110111.0010100111 0110011001001.1101000111 -648.8369 3273.81933 -649.19492 3273.92517 0.05514 0.00323

11 44.5332 27.9365 1111000011001.0111010101 0010000111001.1010001000 -486.5419 1081.63281 -486.75619 1082.09167 0.04005 0.04240

12 87.5166 -123.214 1110110110000.1001101001 0001110101011.1111111001 -591.3974 939.98535 -591.44750 940.05443 0.00846 0.00734

13 -474.604 377.223 0010111001111.0100111010 1100011101100.0000100100 1487.306 -1811.9648 1487.49784 -1812.4950 0.01285 0.02925

14 -14.998 -99.9619 0000011001000.0110011001 1111100001101.1101000111 200.3994 -242.18066 200.49120 -242.12677 0.04578 0.02258

15 -10.8271 -474.604 0000000001011.1001010100 1111101110111.1110011010 11.58203 -136.09960 11.51392 -136.05351 0.59154 0.03387

16 -14.998 170.986 0011100011111.0110101100 0001010000101.1101100011 1823.417 645.84667 1823.41646 645.84286 0.00008 0.00059

17 21.4551 -382.869 0000001110001.1110001000 1111011011011.1000111101 113.8828 -292.44042 113.95275 -292.35080 0.06137 0.03065

18 91.3428 -20.6582 1111101001100.0110111000 1111000000010.1100000110 -179.570 -509.24414 -179.61587 -509.40605 0.02536 0.03178

19 -10.8271 75.999 1110100111000.1000001100 0111011001100.1101110101 -711.488 *

3788.86426

-710.86521 * -

4404.59939

0.08765 *

20 -99.9619 -20.6582i 0000000100111.1111111000 0010111110110.1010110100 39.99218 1526.67578 39.96539 1526.81502 0.06703 0.00912

21 -10.8271 75.999 1110111100000.0111011010 0001111110101.1110110010 -543.537 1013.92382 -543.65921 1014.39614 0.02246 0.04656

22 87.5166 -123.214 1100010101001.1111011111 0011000001010.1111010101 -1878.03 1546.95800 -1877.9584 1547.29390 0.00393 0.02170

23 -474.604 377.223 0010011111010.1010000100 1111111100001.0110011110 1274.628 -30.59570 1275.09324 -30.50869 0.03641 0.28519

24 -14.998 -129.91 0000010111110.1101000110 0000010111110.1101000110 184.1904 190.81835 184.19054 190.81853 0.00006 0.00009

25 -10.8271 -474.604 0000001000100.1000011101 0001011011101.1000100011 68.52832 733.53417 68.10462 733.92532 0.62213 0.05329

26 -14.998 170.986 0000111111101.1111010001 1110001101100.1001111111 509.9541 -915.37597 510.29278 -915.35686 0.06637 0.00208

27 21.4551 -382.869 0000001001000.1001001111 1111000000111.0101010110 72.57714 -504.66601 72.86700 -505.08154 0.39779 0.08227

28 91.3428 -20.6582 0000101011101.0001000001 1111010111011.1100001101 349.0634 -324.23730 349.11397 -324.30651 0.01446 0.02134

29 -10.8271 75.999 1111001000110.1010110010 0000100010001.1110100010 -441.326 273.90820 -441.31329 274.44890 0.00291 0.19701

30 55.3164 -129.91 0000000101101.1101010011 1111100000011.1001001111 45.83105 -252.42285 45.77084 -252.53310 0.13154 0.04365

31 63.999 -32.00 0000011100110.0011110110 0000011100110.0011110110 230.2402 -8.40039 230.52839 -8.42202 0.12500 0.25682

Average Percentage Error-

0.149
0%

0.055
9%

0.10247%

*4404.59939 is outside the vector range (4095.99)

VI. CONCLUSION

The HDL design of 32-Point FFT is implemented with IEEE fixed point package, ‘fixed_pkg’. This design works properly

on Modelsim but is non-synthesizable. A new data structure is devised which is actually a bit vector that fulfills all the

complex and real data structure needs. This data structure is completely defined by IEEE package,’STD_logic_1164. For

implementing DSP algorithms using this data structure some specialized arithmetic algorithms are designed. 32-Point FFT

Delay type Delay (ns) Delay (%)

Logic 65.314 14.0

Route 401.418 86.0

Total 466.732 100.0

http://www.ijareeie.com/

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2013

Copyright to IJAREEIE www.ijareeie.com 3606

is again implemented with this data structure and this design is absolutely synthesizable. Simulated results of synthesizable

32-Point FFT design are compared with Matlab results, and we get average error of 0.1%. This shows that this method of

designing and implementing DSP algorithms is very efficient and completely synthesizable.

 REFERENCES

[1] 1076-2008- IEEE Standard VHDL Language Reference Manual, DOI: 10.1109/IEEESTD.2009.4772740, 2009.

[2] David Bishop, fixed Point Package User’s Guide. URL: www.vhdl.org/fphdl/Fixed_ug.pdf.
[3] Uwe Meyer-Base, Digital Signal Processing With Field Programmable Gate Arrays 3E, 2007

[4] John G. Proakis, Digital Signal Processing: Principles, algorithms, And Applications, 4E, 2007.

[5] Charles H. Roth, Digital Systems Design using VHDL, 1998.
[6] Douglas J. Smith: A practical Guide For Designing, Synthesizing And Simulating Asics And FPGAs Using VHDL Or Verilog, 1996.

[7] Synthesis Forum of Xilinx, UTL: http://forums.xilinx.com/t5/Synthesis/compilation-of-ieee-proposed-library- fails-ISE-13-2/td-p/200101.

[8] Software Manual of Xilinx ISE Design suite.

http://www.ijareeie.com/
http://dx.doi.org/10.1109/IEEESTD.2009.4772740

	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK1
	OLE_LINK2
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9
	OLE_LINK10
	OLE_LINK11
	OLE_LINK12
	OLE_LINK13

