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ABSTRACT:A number of techniques for the reduction of interval system have been presented by various researchers.
But the validity of the method is based on the resulting error by the model reduction. The system with parameter
variations within bounds creates intervals in the coefficients of the system polynomial; hence the system is called
interval system. This method represents the reduction of the order of Interval system about a general shifting point ‘a’
.The selection of this shifting point ‘a’ done based upon the arithmetic mean of the real parts of the poles of four high
order fixed systems obtained by Kharitonov’s theorem. The denominator of the reduced model obtained by Least
Square method while the numerator is obtained by matching the power series expansion of the original high order
system with the reduced model . A numerical example is provided to demonstrate various aspects of theoretical results.
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I.INTRODUCTION

The dimensionality problem in the analysis of high order systems is well known. In many situations it is desirable to
replace the high order system by a lower order model. Several methods are available in the literature for the model
reduction of high order dynamic systems. Recently it was shown[1] that care has to be taken, If the system transfer
function contains a pole of magnitude less than one, then numerical problems can arise owing to a rapid increase in the
magnitude of successive time moments .This gives an ill conditioned set of linear equations to solve for the reduced
denominator .To overcome this problem, it is sometimes possible to use a linear shift s> (s+a) such that the pole of
smallest magnitude has the modulus of approximately one, this tends to reduce the sensitivity of the method . However,
the focus of the work so far appears to concentrate mainly on the basic idea of extending this technique for order
reduction of fixed parameter systems. In this paper this method is extend for order reduction of high order Interval
systems. Consequently, the method is more flexible than most other stability preserving methods and is simple to
implement.

11.MAIN PROCEDURE
Given the nth order transfer function of a high order interval systems be represented as

_ lag afl+[a7 af]s++[an—1 .af_1]s" L
H() = o5 ot T+lor ofTor-+lon olsn (D

Where [a;, 8] for i =0 to n-1and [b;, b*] for i=0 to n are the interval parameters. Consider now the set 8(s) of real
polynomials of degree ‘n’ of the form

§(s) =8y + s+ -+ 8,5, (2)
Where the coefficients lie within given ranges

8o€Mxs,v,],6:€0x1, y41, ... 6,€Dxn, ¥, ] Write 6§ =[84,64, .. ... ... ..., 8,] using the Kharitonov’s theorem the
following four extreme polynomials are derived
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Ki(s) = xq + x5 + y,5° + y35° + -
K;(s) = xq + y15 + y,5° + x35° + -

— 2 3
K3(s) = yo + x15 + x,5% + y35° + -
— 2 3
K4(s) = yo + y15 + x55% +x35° + -

From the above equations the numerator and the denominator polynomials are obtained.
Thus the four nth order system transfer functions are obtained each defined as

G __ Apo+Ap;s+Apys®+--+App_qshTt 3
P(S) - CT — . ( )
Bpo+Bp1S+Bpase+--+Bpns

Where p=1,2,3,4. and n = order of the original system.
Replace the Gy(s) by Gy(s+a) where the value of *a’ obtained by Arithmetic mean. Let the nthorder system transfer
function of Gy(s) is given by:

m

[16+2)

Gy(5) =k

[1(s+P)

Where, F’, and Zi are the poles and zeros of the system, respectively. For this system, ‘a’ is given by the arithmetic

mean (A.M) of the magnitude of real parts of P, QPi |)

izt N
The above equation gives value for the linear shift point *a’. If Gy(s+a) is expanded about s=0, then the time moment
proportional’s, C; are obtained by:

G,(s+a) = i CpyS'
=0 . (4)

Similarly, if Gp(s+a) is expanded about s= 00, then the Markov parameters m; are obtained by:

G,(s+a) :imms‘j
= . (5)

The four reduced rt order models obtained as
Ry(s) = .. (6)

Which retains‘t” Time moments and ‘m’ Markov parameters, the coefficients €

dp0+dp1$+dp2$2+"'+dpr_1$r_1

epotep1Stepysit-tepys”
or A in (6) are derived from

following set of equations
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dpo = €p0Cpo

dp1 = €p1Cpo+€p0Cp1
de = epZCpO + eplcp1+epocp2
. ' ' ' e (7
dpr—l = €pr-1Cpo +oeeet €poCpr-1 ( )
0 = €pr-1Cp1 +oee €poCpr
0 = €pr-1Cp2 +oee €poCpr+1
0= €pr-1Cpt +oee €p0Cpr+e-1
And
dpr—l = mpl \I
dpr—z = mplepr—l + mpZ E (8)

. . . . |
Aot = Mp1€pep1 + Mpa€pepp + o0+ mpr—t)

Where the C;and m,  are the Time moment proportional and Markov parameters of the system, such that j=(0,1,.....t-

1) and k=(1,2,.....m) respectively. The denominator coefficients of the reduced model are obtained by substituting (8)
in (7) and are given by the solution set.

Cpr+t—1 Cpr+t—2 Cpt 1T epo ] 0
Cpret—2 Cprat—g » v oo Cpt  Cpt—1 €p1 0
Cpr—l Cpr—Z """"" Cpl CpO . I‘T]p1
Cpr-2 Cprog v v oo Cpo = Mpy x| | Mp2 9
Cpr-3Cpr—g -+ - Cpo—Mpy — Mp; . - Mp3 ( )
. mp4
Cpt Cpt—1 - Cpo=Mpy . =Mpr_tq [Cpr—1] Myl

or, the above equation can be represented as H e = m in matrix vector form and ‘e’ can be calculated from,

e:(HTH )1HTm .. (10)

are the coefficients of the reduced model denominator. If this estimate still does not yield a stable reduced
denominator then H and m in (10) are extended by another row, which corresponds to using the next Markov parameter
from the full system in Least Squares match. Once the reduced denominator obtained, formed by ‘e’, apply the inverse
shift s> (s-a) to this reduced denominator. Later calculate the reduced numerator as before by matching proper number
of Time moments of Gy(s+a) to that of reduced model.
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I11. ILLUSTRATIVE EXAMPLE

Example: Consider the 6™ order interval system given by its transfer function:
[2 3]s® + [70 71]s* + [762 763]s® + [3610 3611]s? +
6(s) = [7700 7701]s* + [6000 6001]
[12]s® + [41 42]s° + [571 572]s* + [3491 3492]s + [10060 10061]s? +
[13100 13101]s + [6000 6001]
The four transfer functions obtained using the Kharitonov’s theorem
6,(s) = 2s> + 70s* + 763s® + 3611s% + 7700s* + 6000
256 + 4155 + 571s* + 3492s3 + 10061s? + 13100s + 6000
6,(s) = 3s® + 70s* + 762s® + 3611s? + 7701s* + 6000
2s6 + 42s5 + 571s* + 3491s® + 10061s? + 13101s + 6000
2s% + 71s* + 763s® + 3610s% + 7700s* + 6001
C(s) = s6 + 41s°5 + 572s* + 3492s3 + 10060s? + 13100s + 6001
3s® + 71s* + 762s® + 3610s% + 7701s* + 6001
C.(s) = s6 + 4255 + 572s* + 3491s3 + 10060s? + 13101s + 6001
The reduced models obtained using four time moments

Ri(s) = oot 892 \jth AM=3.416683

s2+3.285875+0.517962

RZ(S) — 2.443738s+5.173420 With AM=3.49998

s2+7.09981s+5.173420

R3(S) — 2.376220s+9.280991 With AM=6.8333

$2+10.727719s+9.280991

R4(S) — —1.0888325+38.670380 With AM=6.99998

s2433.708710s+38.670380
Thus the transfer function of the reduced interval model obtained as

[—1.088832 2.819706]s + [0.517962 38.670380]
[11]s% +[3.285871 33.708710]s + [0.517962 38.670380]

R(s) =
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Simulation results in figurel and figures 2, shows the accuracy of the step response when the reduced model

compared with the original interval system.
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Fig 1: Lower Boundary Response
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In the fig 1, it shows the accuracy of the lower boundary step response when the reduced model compared with the
original interval system.

Step Response
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Fig 2: Upper boundary Response

In the fig 2, it shows the accuracy of the upper boundary step response when the reduced model compared with the
original interval system.

IV.CONCLUSION

A Novel method is suggested for the order reduction of high order Interval system based on Least Square moment
matching method. Stability is guaranteed in the reduced models for linear time invariant interval systems.
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