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ABSTRACT: Nonlinear equation systems may have multiple optimal solutions. The main task of solving nonlinear 
equation systems is to simultaneously locate these optimal solutions in a single run. When solving nonlinear equation 
systems by evolutionary algorithms, usually a nonlinear equation system should be transformed into a kind of 
optimization problem. At present, various transformation techniques have been proposed. This paper presents a simple 
and generic transformation technique based on multiobjective optimization for nonlinear equation systems. The 
experimental results have demonstrated that, overall, our transformation technique outperforms another state-of-the art 
multiobjective optimization based transformation technique and four single-objective optimization based approaches on 
a set of test instances. The influence of the types of Pareto front on the performance of our transformation technique 
has been investigated empirically. Moreover, the limitation of our transformation technique has also been identified and 
discussed in this paper. 
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I. INTRODUCTION 
 

Power system operation problems increase with size, loading, and the complexity of the network. Restructuring in the 
electric power industry has further enhanced the problems of power systems related to power delivery and power 
quality. The deregulated electric power industry. The issue of transmission congestion is particularly prominent in 
deregulated and competitive markets, thus requiring an appropriate management strategy [1]. In the new competitive 
electric market, it is now mandatory for the electric utilities to operate in ways that make better use of existing 
transmission facilities, and in conjunction with maintaining the security, stability, and reliability of the supplied power. 
However, the transmission network, as a medium between power generation and consumption centres, has a limited 
capacity as well as its own security concerns. Congestion in electricity markets occurs when the transmission network 
is unable to accommodate all of market desired transactions due to some violations in its operating limits [2]. For 
congestion management purposes, some facilities such as phase shifting transformers or Flexible AC Transmission 
System (FACTS) devices can be used to efficiently enhance existing trans- mission networks by increasing power 
transfer capacity as an effective alternative to constructing new transmission lines.  
 
Currently, one kind of the most successful EAs is multiobjective EAs (MOEAs), which are designed for dealing with 
multiobjective optimization problems (MOPs) [3]. Since the objectives in a MOP always conflict with each other, a 
MOP may have many or even infinite optimal solutions. The purpose of MOEAs is to find a set of representative 
optimal solutions called the Pareto optimal solutions in a single run. Recently, some researchers have demonstrated that 
MOEAs are not only effective for MOPs, but also can be extended to solve other kinds of optimization problems. For 
instance, Deb and Saha [4] used multiobjective optimization for solving multimodal optimization problems. Bui et al. 
[5] investigated the use of MOEAs for dynamic optimization problems. Cai and Wang [6] incorporated multiobjective 
optimization into constrained optimization problems with the aim of balancing the objective function and constraints. 
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The transformed problem consists of two parts: the first part is the location function that is used to determine the 
location of the images of the optimal solutions of a NES in the objective space, and the second part is the system 
function that can reflect the basic characteristics of a NES. MONES has the following features.  

1. No prior knowledge (such as the number of the optimal solutions of a NES) is required.  
2. All the optimal solutions of a NES are the Pareto optimal solutions of the transformed problem.  
3. The images of all the optimal solutions of a NES are located on the line segment defined by y = 1–x in the 

objective space of the transformed problem.  
4. The current MOEAs can be applied to solve the transformed problem in a straightforward manner. Therefore, 

multiple optimal solutions of a NES could be located simultaneously in a single run.  
5. If a NES contains infinite optimal solutions, it is a natural way for the current MOEAs to find a number of 

representative optimal solutions, the images of which may be evenly distributed along the Pareto front in the 
objective space of the transformed problem. 

The rest of this paper is organized as follows. Section II introduces multiobjective optimization problems and the 
related concepts. Section III briefly reviews the related work. In Section IV, MONES is presented in detail. Moreover, 
the differences between MONES and another multiobjective optimization based transformation technique called CA 
have been analysed. The influence of the types of Pareto front on the performance and the limitation of MONES have 
also been studied in this section. Finally, Section V concludes this paper. 
 

II. CONGESTION MANAGEMENT USING SERIES FACTS DEVICES 
 

FACTS devices have been used for several purposes including congestion management. It is a well recognized fact that 
the performance of FACTS devices in a power system mainly depends on its placement and tuning.   investigated a 
simulated annealing based optimization method for placement of flexible AC transmission systems (FACTS) devices in 
order to relieve congestion in the transmission lines while increasing static security margin and voltage profile of a 
given power system [7].  It used sensitivity analysis and extended equal area criterion to find the optimal location and 
capability of FACTS in a power system for enhancing static voltage and transient stability. The proposed an algorithm 
for optimal congestion dispatch calculation with UPFC controls. A decomposition control method was introduced to 
solve this optimal power flow problem. Proposed a method to determine the optimal location of thyristor controlled 
series compensators (TCSCs) for congestion management. 
 

III. GENERIC TRANSFORMATION TECHNIQUE 
A. MONES  
This paper presents a generic transformation technique based on multiobjective optimization for NESs called MONES, 
which converts a NES into a bi objective optimization problem. Inspired by [8], the transformed problem is composed 
of two parts: the first part is the location function that includes the location information of the images of the optimal 
solutions of a NES in the objective space, and the other part is the system function that includes the basic information 
of a NES. The location function can be formulated as 

 

൜ (ݔ	ß)1ߙ	݁ݖ݅݉݅݊݅݉ 	= 1ݔ	
(ݔ	ß)2ߙ	݁ݖ݅݉݅݊݅݉ 	= 	1	 −  	1ݔ	

           (1) 
 
 
 
 

 
 
 
 
 

 
Fig. 1. Relationship between α1(x) and α2(x). (a) Relationship in the decision space. (b) Relationship in the objective 

space. 
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Where ß x = (x1... xD) ∈ S is the decision vector and x1 is the first decision variable of a NES. The relationship 
between α1 (ß x) and α2 (ß x) has been depicted in Fig. 1. As shown in Fig. 1(a), with respect to x1, α1 (ß x) is a 
strictly monotone increasing function and α2 (ß x) is a strictly monotone decreasing function. Therefore, as the two 
objectives of the location function, α1 (ß x) and α2 (ß x) conflict with each other. According to the concepts introduced 
in Section II, it can be easily deduced that each decision vector in the decision space of a NES is a Pareto optimal 
solution of the location function. Moreover, as shown in Fig. 1(b), the Pareto front of the location function is a line 
segment defined by y =1– x in the objective space.  
 
The system function has the form  

൜ minimize	β1	(ß	x) 	= 	 |ei	(ß	x)|	i = 1	
minimize	β2	(ß	x) 	= 	M	max	(|e1	(ß	x)|. . . |eM	(ß	x)|)   (2) 

 
Theorem 1: All the optimal solutions of a NES are the Pareto optimal solutions of the transformed problem. ∗ Proof: 
Let ß x be one of the optimal solutions and ß x be a decision vector in the decision space of a NES. According ∗ to the 
property of the location function, ß x cannot be Pareto ∗ dominated by ß x in terms of equation. Furthermore, since β1 
(ß x ) = ∗ ∗ β2(ß x ) = 0 and β1(ß x ), β2(ß x ) ≥ 0, ß x also cannot be ∗ Pareto dominated by ß x in terms. Therefore, ß 
x is a Pareto optimal solution of the transformed problem. Theorem 1 reflects the relationship between a NES and the 
transformed problem.  
Theorem 2: The images of all the optimal solutions of a NES are located on the line segment defined by y =1– x in the 
objective space. ∗ Proof: Let ß x be one of the optimal solutions of a NES. ∗ According to Theorem 1, ß x is a Pareto 
optimal solution of ∗ ∗ the transformed problem. Since β1 (ß x) = β2 (ß x) = 0, is ∗ equivalent to equation under this 
condition. As a result, ß x is also Pareto optimal solution of the location function. As shown ∗ in Fig. 1(b), the image of 
ß x is located on the line segment defined by y =1– x in the objective space. Theorem 2 verifies that the location 
information of the images of all the optimal solutions of a NES in the objective space is determined by the location 
function. 
 
MONES consists of at least two back-to-back DC-AC convert connected via a common DC link. Vi, Vj , and Vk are 
complex voltages at buses i, j, and k, respectively. Vl = Vl<  .ଵare the magnitude and angle of Vlߠ ,ଵ (l = i, j, k) and Vlߠ
Vsein is the complex controllable series injected voltage source, which represents the series compensation of the series 
converter. V݁ݏ௜௡ is defined as V݁ݏ௜௡ = V݁ݏ௜௡ < > ௜௡ and݁ݏ௜௡ (n = j, k). V݁ݏ ଵߠ  ଵsein are the magnitude and angle ofߠ
V݁ݏ௜௡. The basic model of MONES, as shown in Fig. 1, consists of three buses i, j, and k [9], [10]. Two transmission 
lines are connected with the bus i in common. The equivalent circuit of the MONES with two converters is represented 
with two series injected voltage sources, as shown in Fig. 1. Z݁ݏ௜௡ is the series transformer impedance. Pi and, Qi has 
given in below are the sum of the active and reactive power flows leaving the bus i. The MONES branch active and 
reactive power flows leaving bus n are ௡ܲ௜ and ܳ௡௜ and the expressions are given below. Iji, Iki are the MONES branch 
currents of branch j–I and k–i leaving buses j and k, respectively. 

 
௜ܲ= = ܸ݊ଶ ௜݃௜  - ∑ ௜ܸ  ௡ܸ[݃௜௡ cos (ߠ௜ − ௜ߠ) ௡) + ܾ௜௡ sinߠ − ∑  + [(௡ߠ ௜ܸ ௦ܸ௘೔೙ߠ)݊݅ݏ௜ − ௜ߠ)) -ܾ௜௡cos	௜௡)݁ݏ௡ߠ −  [(௜௡݁ݏ௡ߠ

ܳ௜= −ܸ݊ଶ ௜݃௜  - ∑ ௜ܸ  ௡ܸ[݃௜௡ cos (ߠ௜ − ௜ߠ) ௡) - ܾ௜௡ sinߠ − ∑ - [(௡ߠ ௜ܸ ௡ܸ ௦ܸ௘೔೙[ ௜݃௡sin(ߠ௜ − ௜ߠ)) -ܾ௜௡cos	௜௡)݁ݏ௡ߠ −  (௜௡݁ݏ௡ߠ
௡ܲ௜= ܸ݊ଶ݃௡௡  - ௜ܸ ௡ܸ[݃௜௡ cos (ߠ௡ − ௡ߠ) ௜) + ܾ௜௡ sinߠ − ௜)] - ௡ܸߠ ௦ܸ௘೔೙[݃௜௡sin(ߠ௜ − ݏ௡ߠ ௜݁௡)	-ܾ௜௡cos ((ߠ௜ −  [(௜௡݁ݏ௡ߠ

ܳ௡௜= −ܸ݊ଶ݃௡௡  - ௜ܸ ௡ܸ[݃௜௡ Sin (ߠ௡ − ௡ߠ) ௜) - ܾ௜௡ cosߠ − ௜)] + ௡ܸߠ ௦ܸ௘೔೙[ ௜݃௡sin(ߠ௜ − ௜ߠ)) -ܾ௜௡cos	௜௡)݁ݏ௡ߠ − ݏ௡ߠ ௜݁௡)] 
Where n = j; k 

݃௜௡ + jܾ௜௡ = 1/ܼ௦௘೔೙ = ysein; ݃௡௡  + jܾ௡௡  = 1/ܼ௦௘೔೙= ݕ௦௘೔೙ ௜݃௜  =∑݃௜௡. ܾ௜௜ = ∑ܾ௜௡. 
 

IV. MOEAS TO SOLVE THE TRANSFORMED PROBLEM 
 

It is necessary to emphasize that the primary focus of this paper is the transformation technique. Since MONES belong 
to the same kind of transformation techniques, the performance comparison is mainly conducted between them in this 
paper. Essentially, the current MOEAs can be applied to solve the MOPs transformed by MONES in a straight- forward 
way.  
Step 1 G = 0; // G is the generation number.  
Step 2 randomly generates an initial population PG of size N from the decision space.  
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Step 3 Evaluate each individual in PG based on (step 7) or (step 8).  
Step 4 Implement the binary tournament selection, simulated binary crossover, and polynomial mutation to generate the 
offspring population QG.  
Step 5 Evaluate each individual in QG and HG = PG QG.  
Step 6 Divide HG into several nondomination levels (denoted as ND1, ND2...) according to a fast nondominated 
sorting.  

 PG+1 = φ and i = 1.  
 While |PG+1| < N  
 PG+1 = PG+1 NDi and i = i + 1.  

Step 7 End While  
Step 8 If the stopping criterion is satisfied, stop and out- put the final population, otherwise G = G + 1 and go to step 4. 
 

V. RESULTS AND DISCUSSION 
 

In this paper, five test cases (denoted as C1–C5) with different characteristics are used to investigate the effectiveness 
of MONES. The five test instances are designed in this paper and the remaining two test instances are real-world 
applications from the neurophysiology [11] and the economics modelling [12], respectively. The details of these seven 
test instances have been reported in Table I, including the number of the decision variables, the decision space, the 
number of the linear equations, the number of the nonlinear equations, and the number of the optimal solutions. These 
test cases can be categorized into three groups, according to the number of the optimal solutions. 
 
C1 and C2 have two optimal solutions. C2 includes 20 decision variables and is designed to evaluate the performance 
of an algorithm in a high-dimensional decision space. In principle, C2 can be regarded as a generalized implementation 
of C1. The optimal solutions of C1 and C2 are the same in the x1 − x2 space.  
 
C3 and C4 have more than two optimal solutions. Concretely, C3 has 11 optimal solutions and C4 has 15 optimal 
solutions. In these two test instances, some optimal solutions are very close to each other, which makes them very 
difficult for an algorithm to locate all the optimal solutions in a single run.  
 
C5 have infinite optimal solutions. In C5, ∀k ∈ {1... D − 1}, ck = 0. For these three test instances, it is impossible to 
obtain all the optimal solutions in a single run. Therefore, one has to find a set of representative optimal solutions in 
one run, which can well approximate the whole optimal set. Under this condition, CA will have six and 20 objectives 
(i.e., many-objective), respectively. 
 
The proposed multi-objective placement of TCSC is examined on the New-England power system, a well-known test 
system with a standard IEEE 30 bus system was considered for analysis both with conventional load flow method and 
load flow incorporating voltage dependent load models. The simulations were made using MATLAB Power system 
toolbox known as PSAT (Power System Analysis Toolbox). The results of the simulations were plotted and analysed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 IEEE 30 Bus system 
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The proposed algorithm to solve the locating multi objective congestion management and improvement in voltage and 
transient stability problem was tested using an (Fig. 2) IEEE 30-bus system. All simulations were performed on a 
personal computer (i3 3.1 GHz Intel Processor and 2 GB RAM running MATLAB 13a). In practical electricity 
markets, the cost objective function is usually more important than the other stability related objective functions for the 
system operator. Then, the operator can set a higher weighting factor for the cost objective function to emphasize the 
cost against stability objective functions. Of course, this depends on the stability status of the power system. For 
example, in power systems with a high rate of transient stability problems, the system operator may assign a higher 
weighing factor for CTEM to enhance transient stability and to decrease the rate of outages. The proposed framework 
has the ability to accept desired weighting factors for different power systems.  
 
For instance, a case is shown in Table-1 where cost is the prominent objective function. In this case, the weighting 
factors for the cost, VSM, and CTEM objective functions are considered as 0.6, 0.2, and 0.2, respectively. This implies 
that the operating cost or energy prices will be higher if higher levels of security are established for the power system. 
Inasmuch as it is one of the vital responsibilities of the SO to retain enough security in the power system at a reasonable 
cost, the right and fair decision should be made by the SO on behalf of market participants to achieve the maximum 
possible social welfare in the electricity market. 

 
Table: 1 Experimental Result of MONES over 30 Independent runs on five Test cases In Terms of Two Performance 

Indicators 
 

Test Case Best Mean Worst Std Dev 

C1 IGD 1.47e-4 2.01e-4 3.77e-4 4.47e-5 
NOF 2.00 2.00 2.00 0.00 

C2 IGD 2.06e-4 4.44e-4 9.25e-4 1.95e-4 
NOF 2.00 2.00 2.00 0.00 

C3 IGD 1.11e-3 2.12e-3 4.45e-3 7.48e-3 
NOF 1.10 1.10 1.10 0.00 

C4 IGD 2.82e-3 1.06e-2 2.90e-2 7.52e-3 
NOF 1.50e1 1.41 1.10 1.16 

C5 IGD 1.63e-2 4.24e-2 2.12e-1 3.80e-2 
NOF 5.00 3.73 2.10 7.05 

 
 

VI. CONCLUSION 
 

          Nonlinear equation systems (NESs) may have multiple optimal solutions. During the past decade, evolutionary 
algorithms (EAs) have attracted much attention to solve NESs. When using EAs to solve NESs, the transformation 
technique, the aim of which is to transform a NES into a kind of optimization problem, plays a critical role. It is 
established that placement of MONES using NES effectively reduces line congestion and power loss. A multi- 
objective function comprising reduction of active power loss, minimization of total voltage deviations, and 
minimization of security margin with the usage of minimum value of installed MONES is considered for the optimal 
tuning of MONES using differential evolution algorithm. The proposed method is implemented for IEEE 30 bus test 
system. The results are presented and analysed under normal loading, 110% loading, and 125% loading conditions to 
ascertain the effectiveness of the proposed method on the power system performance. It is observed that placement of 
MONES by the proposed methodology causes an effective reduction in congestion in the lines. The results of LUF 
calculation before and after the compensation process show reduction of loading in the congested line. Thus, it is found 
that placement of MONES at the location where NES is maximum is the best location for the placement of MONES in 
terms of reduction of congestion. Simulation results demonstrate the effectiveness and accuracy of the differential 
evolution algorithm technique to achieve the multiple objectives and to determine the optimal parameters of the 
MONES under different loading conditions. 
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