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ABSTRACT: In this paper, a relation between type-II discrete sine transform (DST-II) of even length N and N- point 
discrete Fourier transform (DFT) is derived. Also, another two relations between inverse discrete sine transform (IDST) 
of even length N and N- point inverse discrete Fourier transform (IDFT) are established for even and odd DST-II input 
samples respectively.  
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I.INTRODUCTION 
 

Discrete transforms play a significant role in digital signal processing. Discrete cosine transform (DCT), discrete sine 
transform (DST) are used as key functions in many signal and image processing applications. There are eight types of 
DCT and DST. Of these, the DCT-II, DST-II, DCT-IV, and DST-IV have gained popularity. The DCT and DST 
transform of types I, II, III and IV, form a group of so-called “even” sinusoidal transforms. Much less known is group 
of so-called “odd” sinusoidal transforms: DCT and DST of types V, VI, VII and VIII. 
The DST was first introduced to the signal processing by Jain [1], and several versions of this original DST were later 
developed by Kekreet al.[2], Jain [3] and Wang et al. [4].   Ever since the introduction of the first version of the DST, 
the different DSTs have found wide applications in several areas in Digital signal processing (DSP), such as image 
processing[1,5,6], adaptive digital filtering[7] and interpolation[8]. The performance of DST can be compared to that of 
the DCT and it may therefore be considered as a viable alternative to the DCT.  For images with high correlation, the 
DCT yields better results; however, for images with a low correlation of coefficients, the DST yields lower bit rates [9]. 
Yip and Rao [10] have proven that for large sequence length (N ≥ 32) and low correlation coefficient (< 0.6), the DST 
performs even better than the DCT. 
Among all the discrete transforms, the discrete Fourier transform (DFT) is the most popular transform, and it is mainly 
due to its usefulness in very large number of applications in different areas of science and technology. The DFT plays a 
key role in various digital signal processing and image processing applications [11, 12]. Not only it is frequently 
encountered in many different applications, but also it is computation-intensive. DFT and inverse discrete Fourier 
transform (IDFT) have been regarded as the key technologies for signal processing in orthogonal frequency division 
multiplexing (OFDM) communication systems.  
In this paper, the relation between DST-II of even length N and N- point DFT has been established. Another two 
relations between IDST-II of even length N and N- point IDFT are derived for even and odd input samples of   DST-II 
respectively.   
The rest of the paper is organized as follows. The proposed relation between DST-II and DFT is presented in Section-
II. Section-III establishes the relation between IDST-II and IDFT. Conclusion is   given in Section-IV. 
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II.RELATION BETWEEN DST-II AND DFT 
 

The type-II DST for input sequence  ; 0,1, 2,..., 1
n
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The YII (k) values represent the transformed data. Without loss of generality, the scale factor
2

kN c  in (1) may be 

ignored in the rest of the paper. 
The 1-D DFT of input sequence  ; 0,1, 2, ..., 1

n
n Nu     is defined by 
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Separating even and odd input samples for even length N , (1) can be expressed as 
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Define even and odd input samples of DST-II in terms of input sequence nu of DFT in (3) as given below. 
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Substituting (5) in (4), we obtain 
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It can proved that 
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Using (7) in (6), we have 
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The above expression can be written as 
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The symbol Im  denotes imaginary part. 

Substituting (3) in (9), we have 
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The above expression gives the relation between DST-II and DFT. 
 

III.RELATION BETWEEN IDST-II AND IDFT 
 

The inverse discrete sine transform (IDST) is defined as 
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The inverse discrete Fourier transform (IDFT) is given by 
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By neglecting the normalization factor  1 N  in (12), IDFT can be written as 
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Let us now find out IDST in terms of IDFT for n even and n odd. 
3.1 IDST FOR EVENn   

For even n  , we take 2n r , where 0,1, 2,.., 1.
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According to (13), the value within the brackets of (14) represents the r th  component of N - point IDFT of   ( )P k   , 

denoted by  ( )N
r P kIF  .Hence (14) can be written as 
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The above expression gives the relation between IDST and IDFT for even n .  
3.2 IDST FOR ODDn   

For odd n  , we take 2 1n r  , where 0,1, 2,.., 1.
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Using (15) in the above expression, we obtain 
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According to (13), the value within the brackets of the above expression (17) represents the ( 1)N r th   component 
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The above expression gives the relation between IDST and IDFT for odd n . 
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IV. CONCLUSION 
 

In this paper, the relation between DST-II of even length N and N- point DFT has been established. Another two 
relations between IDST-II of even length N and N- point DFT are derived for even and odd input samples of   DST-II 
respectively.   
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