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ABSTRACT: In this paper, we propose a new geometry representation method for multiview image sets. Our approach 
relies on graphs to describe the multiview geometry information in a compact and controllable way. The links of the 
graph connect pixels in different images and describe the proximity between pixels in 3D space. These connections are 
dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and 
reconstructing multiple views. Our multiview image representation is very compact and adapts the transmitted 
geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, 
our graph-based representation (GBR) carefully selects the amount of geometry information needed before coding. 
Experimental results demonstrate the potential of this new representation. the PWS images is compressed using suitable 
graph Fourier transforms (GFTs) by considering both the sparsity of the signal’s transform coefficients and the 
compactness of transform description. Unlike fixed transforms, such as the discrete cosine transform, we can adapt 
GFT to a particular class of pixel blocks. In particular, a defined search space of GFTs is selected to minimize total 
representation cost via our proposed algorithms, leveraging on graph optimization techniques, such as spectral 
clustering and  minimum graph cuts..   
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I.INTRODUCTION 
 

MULTIVIEW image processing received considerable attention in recent years. One of the main open questions in 
multiview image  processing is the design of representation methods for multiview data ,where the challenge is to 
describe the scene content in a compact form that is robust to lossy data compression. All these representations contain 
two types of data: i) the color or luminance information, which is describes by 2D images; ii) the geometry information 
that describes the scene’s 3D characteristics, represented by 3D coordinates, depth maps or disparity vectors.For 
Effective representation, coding and processing of multiview data partly relies on the proper manipulation of the 
geometry information 

The multiview plus depth (MVD) [6] format has become very popular in recent years for 3D data representation 
and coding. Depth information can be used to build a reliable estimation of scene geometry, enabling encoders to 
extract the correlations between views [7] and decoders to synthesize virtual views..  However, the representation of 
geometry with depth maps has one main drawback: if lossy compression is applied to depth images, as done in classical 
coders, the resulting error affects the quality of synthesized images. This is the case even if the depth gives a good 
estimation of the 3D scene geometry. More specifically, an error ∆ in the depth value for a first viewpoint (due to 
quantization for example) leads to a spatial error ∆ when determining the position of the corresponding pixels in 
neighboring views..  

Specifically, we propose a new Graph-Based Representation (GBR) for geometry information, where the geometry 
of the scene is represented as the connections between corresponding pixels in different views. In this representation, 
two connected pixels represent neighboring points in the 3D scene. The graph connections are derived from the dense 
disparity maps and  it provide just enough geometry information to predict pixels in all the views that have to be 
synthesized. GBR drastically simplifies the geometry information to the bare minimum required for view prediction.  

In more detail, the GBR is constructed as follows. The first view in the set (View 1) is represented by its color 
information. Then the GBR represents the new pixels of View 2 (i.e., pixels that are not present in View 1, such as 
disoccluded pixels) and links them to particular pixels in View 1. The same approach is repeated along the view 
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directions. Hence, the resulting representation describes 3D points of the scene i.e., the first time they are captured by 
one of the cameras, and links them through the different views in the graph. And finally 3D images reconstructed 

we propose to compress the 3D images using suitable graph Fourier transforms (GFTs) to minimize the total 
signal representation cost of each pixel block, considering both the sparsity of the signal’s transform coefficients and 
the compactness of transform description. we design two techniques to reduce computation complexity. In the first 
technique, we propose a multi-resolution (MR) approach, where detected object boundaries are encoded in the original 
high resolution (HR), and smooth surfaces are low-passfiltered and down-sampled to a low-resolution (LR) one, before 
performing LR GFT for a sparse transform domain representation. At the decoder, after recovering the LR block via 
inverse GFT, we perform up-sampling and interpolation adaptively along the encoded HR boundaries, so that sharp 
object boundaries are well preserved. The key insight is that on average PWS signals suffer very little energy loss 
during edge-adaptive low-pass filtering, which enables the low-pass filtering and down-sampling of PWS images. This 
MR technique also enables us to perform GFT on large blocks, resulting in large coding gain. In the second technique, 
instead of computing GFT from a graph in real-time via eigen-decomposition of the graph Laplacian matrix, we pre-
compute and store the most popular LR-GFTs in a table for simple lookup during actual encoding and decoding. 
Further, we exploit graph isomorphism to reduce the number of GFTs required for storage to a manageable size.  

 
II.LITERATURE SURVEY 

 
Depth-based representations in multiview image coding suffer from geometry inaccuracies due to lossy compression 

of depth information, which poses problems in both view prediction quality and compression performance. Different 
approaches have been proposed recently to improve overall performance while using lossy compression of depth 
information 

Closest to our proposed GBR, several methods have been proposed to reduce redundancy in the geometry 
representations for multiview data. As an example, the layered depth image (LDI) representation [1], [2] avoids the 
inter-view redundancies, so that the 3D points of the scene are represented once and only once, in contrast to light field, 
multiview or depth-based representations, but similar to our proposed approach. In LDI, pixels of multiple viewpoints 
are projected onto a single view, the redundant pixels are discarded and the new ones (i.e., the ones occluded on this 
reference view) are added in an additional layer. The main drawback of LDI is that, unlike our method, it directly uses 
depth, associated to each of the layers. Thus, even if the geometry information is less redundant in LDI, the problem of 
controlling the error due to depth compression is still present, i.e., no solution is provided to adapt the accuracy of the 
lossy depth representation to the view synthesis task  
 

III.PROPOSED METHOD 
 

A. Multiview Image Data 
 

We describe now our new Graph-Based Representation approach in detail. We consider a scene captured by N 
cameras with the same resolution and focal length f . The n-th view is denoted by , with 1 ≤ n ≤ N, where 퐼  (r, c) is the 
pixel at row r and column c. We consider translation between cameras, and we assume that the views are rectified. In 
other words, the geometrical correspondence between the views 퐼  only has horizontal components.We also work under 
the Lambertian assumption, which states that each 3D point of the scene has the same lighting condition when viewed 
from every possible viewpoint.We assume that a depth image, 푍  is available at the encoder for every viewpoint, 퐼 . 
Since the views are rectified, the relation between the depth z and the disparity d for two camera views is given by 
 
                                            푑 =                                      (1) 
where δ is the distance between the two cameras. In what follows, the geometry information is given by disparity 
values that are computed from the depth maps 푍 	and the camera parameters. 
 
B. Geometrical Structure in Multiview Images 
We first analyze the effect of camera translation on the image content. Let us consider two views In and In+1 captured 
by cameras that are separated by a distance δ. For the sake of clarity, we first consider integer disparities, and we 
explain  how we handle the sub-pixel precision later. The geometrical correspondence between pixels in the two views 
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takes the form of 퐼 (푟, 푐) = 퐼 (푟, 푐 + 푑) ,where d is a disparity value. These correspond to the elements of the scene 
that are visible in both views. Alternatively, the elements that are visible only from one viewpoint are designed under 
the general name of occlusions, even if their occurrence is not only due to object occlusions. More exactly, we can 
categorize these pixels that are present only in one view, into four different types as illustrated in Fig. 2. First, a new 
part of the scene appears in the view because of camera translation. This usually appears from the right or left 
(depending on translation direction) and the new pixels are not related to object occlusions. They are called appearing 
pixels. During camera translation, foreground objects move faster than the background. As a result, some background 
pixels may appear behind objects and are thus called disoccluded pixels. Conversely, some background pixels may 
become hidden by a foreground object. These are called  the occluded pixels. Finally, some pixels disappear in the 
viewpoint change, and they are called disappearing pixels. 

 
 

Fig. 1. Illustration of camera translation for a simple scene with a uniform background, and one foreground object. 
Types of pixels in depth-based interview image warping: pixels can be a) appearing, b) disoccluded, c) occluded and d) 

disappearing. The green plain line is an arbitrary row in the reference view and the dashed line is the corresponding 
row in the target view 

 
C. Graph Construction from depth  
A graph with N levels describes 1 reference view and N − 1 predicted views and is constructed based on the depth maps 

푍 , 1 ≤ n ≤ N − 1. More precisely, the depth maps are converted to integer disparity values 퐷 , 1 ≤ n ≤ N – 1.Disparity 
calculation can be done by comparing the consecutive views and disparity map is plotted .This process continues until 
the last view.That is we have to compare first and second view ,then second and third,and thus continues. Since the 
object displacement is only horizontal in our setup with rectified views, the considered graph is constructed 
independently for each image row. For each row r , the graph incorporates color and geometry components, which are 
described by two matrices 훤 (of size N ×W) and	훬  (of size NW × NW), where N is the number of levels (i.e., the 
number of views encoded by the graph) and W is the image width in pixels. The color values in row r are given by  훤  . 
The matrix 	훬  is a connectivity matrix between the NW pixels (the ordering of the NW is done from left to right in the 
view order, i.e., the pixels of the first view are indexed from 1 to W, those of the second view from W+1 to 2W, etc.). A 

connection between a pixel i and a pixel j is represented by 	훬  (i, j ) = 1. In the graph construction, both the color and 
connectivity matrices are initialized to 0, which means “no connection” and “no color value,” respectively.    
We now describe in detail the construction of the graph. We show in Fig. 3 a graph construction example, with 5 levels 
that correspond to 1 reference view and 4 synthesized views. For the sake of clarity, we first describe in detail the graph 
construction of an arbitrary row r by considering only one predicted view 퐼 , one reference view 퐼  and its associated 
disparity map 퐷 . The first level corresponds to the reference view, and thus 	훬 (1, j ) = 퐼  (r, j ) for all j ≤ W. Then, the 
connection values 	훬  (i, j ) and the color values  훤  (2, j ) are computed based on the following principles:  

 The pixels intensities are represented in the graph level (i.e., view) where they appear first, which means that 
the second level only contains new pixels that are not presentin the reference view.  

 The connections 	훬  (i, j ) simply connect each new pixel to the position of its neighbor in the previous level. 
More precisely, a new pixel represented in a level l can be a point that is hidden by a foreground object in the 
previous views and becomes disoccluded at level l. If this foreground object was not in the scene, the pixel 
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would have been visible in the previous views, near the other background pixels. The “neighbor” of this new 
pixel in the lower level l −1 is thus the pixel that is right next to the disoccluded area. 

 
 

 
 
Fig 2. Graph construction example: the blue texture background has a disparity of 1 at each view and the red rectangle 
foreground has a disparity of 3 for each view. This example graph contains all different types of pixels: a) appearing, b) 

disoccluded, c) occluded and d) disappearing 
 
ALGORITHMS 
Algorithm 1 
GBR Construction for Two Levels 
Input: 
1: { I1 , I2 } – luminance images of height H and width W 
2:  Z1 – the depth map corresponding to view 1 
3:  δ – the distance between two views 
Output: The color and geometry matrices Γ and Λ 
Algorithm: 
//Convert depth Z1 to dense disparity map D with rounding operation. 
4: for r=1 to H and c=1 to W do 
5:    퐷(푟, 푐) = 푟표푢푛푑[ ( , ) + 0.5] 
6:  end for 
7:   for r=1 to H do 
// Insert I1   in the first level of color matrix Γ 
8: for c         1 to W do 
9:  Γ(r,c,1)        I1(r,c)  
10:  end for 
    // Insert the D(r,1) appearing pixel  in the second level of color matrix Γ 
11:   for c= 1 to D(r,1)  do  
12:  Γ(r,c,2)            I2(r,c) 
13: end for 
   //Link the last appearing pixel to the first pixel of level 1 
14:   Λ(r,W+D(r,1),1)            1 
15:   c1   2  // current column index in I1 
16:   dp         D(r,1) // previous disparity value 
17:   cstop          D(r,c1)+1  // column index in level 2 that serves as stopping criterion 
18: while   cstop  ≤ W  do 
19:  dc           D(r,c1)  // current disparity value 
    // test   if  dc   ≠  dp in the case of occlusion  or disocclusion 
20:  if  dc   ≠  dp then 
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21:  ∆disp = dc   -  dp 

         //test if ∆disp  corresponds to a disocclusion ( > 0 )  or an occlusion (< 0 ) 
 
22: if  ∆disp> 0 then 
 
23:  cstop          cstop+ ∆disp 

      // Fill the disoccluded pixels in second level of  Γ 
24: for c2 c1+dp to min(c1+dp+∆disp  -1,W)  do 
25:   Γ(r,c,2)              I2(r,c2) 
26:  end for 
      // Include the link between the two neighbours in the 3D space in Λ 
27: Λ ( r , c1-1 , c1+dp+W )               1 
28:  else 
         // Deal with Occlusion Manager using algorithm 2 
29:   ( Λ, Γ )              Occlusion Manager ( c1 , c2 , dp , D ,  Γ ,  Λ , I2 ) 
30:  end if 
31:  else 
32:  cstop          cstop +1 
33:  end if 
34:    dp             dc 
35:      c1                    c1+1 
36:  end while 
37:   end for 
 
Algorithm 2  - Occlusion Manager 
 
Input :  
1: c1 , c2 , dp , D ,  Γ ,  Λ , I2 
Output : The color and geometry matrices Γ and Λ 
Algorithm: 
   // The last pixel of the foreground object 
2: clast           c1 
    // The pixel to link with clast and determined in the loop from line 6 to 18 
3:  ctemp          c1 
    // Disparity value of clast 
4: dtemp           dp 
5:  stop=0 
   // The loop is looking for the pixel linked with clast after the occlusion ,a disocclusion may        appear 
6:  while stop=0 do 
7:ctemp          ctemp +1 
8:  dtemp          dtemp-1 
9:  dcur           D( r,ctemp,1) 
    // If a disocclusion appears 
10:  if dtemp ≠ dcur  then  
    // size of disocclusion  
11:  Ndisoc =dcur –dtemp -1 
  // Handle the disocclusion as in Algorithm 1 lines 22 to 28 
12:  for c2 clast+dp+1  to min(clast +dp+Ndisoc  ,W)  do 
13:  :   Γ(r,c2,2)              I2(r,c2) 
14: end for  
15 : Λ ( r , clast , clast+dp+W )               1 
16: stop=1 
17: end if 
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18: end while 
 // Link the last pixel of the foreground  clast to the first pixel after the occlusion ctemp 
      determined by the lines 6 to 18 
19:  : Λ ( r , clast , ctemp)               1 
20: 

                                                                                                                                                                    [1] 
  
GBR view reconstruction and synthesis View Reconstruction From GBR 
 

The reconstruction of a certain view requires the color values and the connections of all lower levels. The 
reconstruction of the color values in the current view is performed by navigating the graph across its different levels. 
This navigation starts from the border of the image at the level (i.e., view) that needs to be constructed; it then follows 
the connections and refers to the lower levels when no color information is available at current level.  an example of a 
view synthesis for the image of level 2, based on the graph in the example of Fig. 3. The pixel numbering is done with 
respect to the column index of 퐼  as in Fig. 3. The reconstruction starts with the appearing pixel 1 at level 2. Then, it 
moves to the reference level and fills pixel color values until encountering a non-zero connection. The first connection 
is after pixel 2 and links it to pixel 3 and 4 in level 2. After filling all the disoccluded pixels, the reconstruction goes 
back to the reference level and fills color information (5, 6 and 7) until the next non-zero connection (at pixel 7). The 
connection in 7 indicates an occluded region. Hence, the reconstruction algorithm jumps across columns in the 
reference view and continues the decoding of the pixels in the reference level for pixel 8 to 19 until it recovers the 
entire row. The reconstruction of the other views (i.e., the other levels of the graph in multiview images) is done 
recursively 
Algorithm 3 
Input:  
1.The graph connections Λ for row r 
Output: 
The disparity map D for row r 
Algorithm: 
2:   D(r,1)          number of appearing pixel 
3:   dtemp         D(r,1) 
4:  for c:=1 to W do 
5   :if Ǝ j such as  Λ(r,c,j)   indicates a disocclusion then 
6:    dtemp        dtemp+ number of disoccluded pixel 
7:  D(r,1)           dtemp 
8:  end if 
9:  if Ǝ j such as Λ(r,c,j) indicates a occlusion then 
10:   dtemp         dtemp-number of disoccluded pixel 
11:   D(r,1)             dtemp 
12:  end if 
13:  end for 
 
Multiresolution Graph Fourier Transform For Compression Of Piecewise Smooth Images 
 

We first provide an overview of our proposed MR-GFT coding system for compression of 3D  images, 
obtained from GBR view reconstruction Given a PWS image, we discuss the encoding and decoding procedures as 
follows. 
A. Encoder 

At the encoder, we first detect prominent boundaries (large inter-pixel intensity difference) in the HR image 
via hard thresholding of image gradients. The threshold is set based on the mean and variance of the image, so that the 
boundary detection is adaptive to the image statistics.We encode HR boundaries losslessly for the adaptive intra 
prediction and interpolation at the decoder , using AEC. We apply AEC for the entire image, which avoids initialization 
for each block and efficiently encodes long continuous boundaries in the image. Then for each K√N × K√N target pixel 
block considering a downsampling factor K = 2, we execute the following three steps                                        
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First, we perform edge-aware intra prediction as proposed. Different from the intra prediction in H.264, edge-
aware intra prediction efficiently reduces the energy of the prediction error by predicting within the confine of detected 
HR boundaries, thus reducing bits required for coding of the residual signal. 

Second, we try two types of transforms for transform coding of the residual block: i) fixed DCT on the 
original HR residual block (HR-DCT), ii) a pre-computed set of LR GFT (LR-GFT) on the down-sampled LR residual 
block (including LR weighted GFT and LR unweighted GFT, as discussed in Section V). We then choose the one 
transform with the best RD performance. Before transform coding using LR-GFT, however, we first adaptively low-
pass-filter and down-sample the K√N × K√N block uniformly to a√N ×√N block. Low-pass filtering is first used to 
avoid aliasing caused bydown-sampling. We propose an edge-adaptive low-pass filterin the pixel domain for the 
preservation of sharp boundaries.Specifically, a pixel is low-pass-filtered by taking average ofits neighbors on the same 
side of HR boundaries within a(2K − 1) × (2K − 1) window centering at the to-be-filteredpixel. The advantage of this 
edge-adaptive low-pass filteringis that filtering across arbitrary-shape boundaries will not occur, so pixels across 
boundaries will not contaminate each other through filtering. 

For the implementation of the HR-DCT and LR-GFT, we pre-compute the optimal transforms and store them 
in a lookup table a priori. During coding, we try each one and choose the one with the best RD performance. The two 
types of transforms, HR-DCT and LR-GFT, are employed to adapt to different block characteristics.HR-DCT is 
suitable for blocks where edge-adaptive low-pass filtering would result in non-negligible energy loss. If very little 
energy is lost during low-pass filtering, LR-GFT would result in a larger coding gain. Note that if a given block is 
smooth, the LR-GFT will default to the DCT in LR, and would generally result in a larger gain than HR-DCT due to 
down-sampling (the rates of transform indices for both, i.e., the transform description overhead, are the same in this 
case). 

Third, after the RD-optimal transform is chosen from the two transform candidates, we quantize and entropy-
encode the resulting transform coefficients for transmission to the decoder. The transform index identifying the chosen 
transform is also encoded, so that proper inverse transform can be performed at the decoder. 
B. Decoder 

At the decoder, we first perform inverse quantization and inverse transform for the reconstruction of the 
residual block. The transform index is used to identify the transform chosen at the encoder for transform coding. 
Secondly, if LR-GFT is employed, we up-sample the reconstructed √N×√N  LR residual block to the original 
resolutionK√N×K√N, and then fill in missing pixels via our proposedimage-based edge-adaptive interpolation , where a 
pixel x is interpolated by taking average of its neighboring pixels on the same side of boundaries within a (2K − 1) × 
(2K − 1) window centering at pixel x. Finally, the K√N×K√N block is reconstructed by adding the intrapredictor to the 
residual block. 
 

IV. RESULT AND DISCUSSION 
 
Different views of input depth images of Statue dataset is shown below 

 
Fig. 3  Six Different views of input depth images of Statue dataset 
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By applying Graph Based Representation we obtain color value and connection value as output. the color or luminance 
information, which is describes by 2D characteristics of the  images;  the connection value represents  geometry 
information that describes the scene’s 3D characteristics,  

 
Fig. 4. Six different views synthesized from GBR 

 
3D images can be reconstructed from the graph based representation using the reconstructon algorithm.which is shown 
in fig 5 

 
 

Fig 5. Reconstructed  3D Image 
 

We exthact prominent boundaries (large inter-pixel intensity difference) in the HR image via hard thresholding of 
image gradients. 

 
 Fig 6 Edjes during encoding 

 

Edges
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we perform edge-aware intra prediction as proposed. Different from the intra prediction in H.264, edge-aware intra 
prediction efficiently reduces the energy of the prediction error by predicting within the confine of detected HR 
boundaries, thus reducing bits required for coding of the residual signal 

 
Fig 7 Intra prediction during encoding 

 
We  perform inverse quantization and inverse transform for the reconstruction of the residual block and prominant 
edges are detected 

 
Fig 8 Edges during decompression  

 
We  perform inverse quantization and inverse transform for the reconstruction of the residual block Finally, 

the K√N×K√N block is reconstructed by adding the intrapredictor to the residual block to obtain the decompressed 
image 

 

 
Fig 9 Decompressed image 

 

intra prediction

edges

decompressed image
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PARAMETER VALUES OBTAINED 

PSNR during view reconstruction 61.80 
Compression ratio 6.746 
Mean Squired error 14.74 

PSNR 42.32 
Maximum absolute Difference 150 

Estimated Time(in seconds) 6.77 
Table 1 :  Output Parameters 

 
.V. CONCLUSION 

 
In this project an alternative method to depth for multiview geometry representation is proposed . Using 

graphs to describe connections between pixels of different views, our method represents the true geometry in the scene 
and avoids the inter-view redundancies. Obtained two matrices as output of Graph based representation , color and 
connection matrices.and also obtained the multiple views during reconstruction and a concatenated images of multiple 
views. The links of the graph connect pixels in different images and describe the proximity between pixels in 3D space. 
These connections are dependent on the geometry of the scene and provide the right amount of information that is 
necessary for coding and reconstructing multiple views. 
 

Also proposed and implemented an efficient method to compress the PWS images using suitable graph Fourier 
transforms (GFTs) to minimize the total signal representation cost of each pixel block, considering both the sparsity of 
the signal’s transform coefficients and the compactness of transform description. 
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