

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

Removal of Voltage Swell using Dynamic Voltage Restorer (DVR)

Miteshkumar Parbhubhai Patel¹

UG Student, Department of Electrical, SSASIT, Surat, Gujarat, India¹

ABSTRACT:Power quality problem is an occurrence manifested as a nonstandard voltage, current or frequency that can cause failure or a miss-operation of equipment. With power quality problem utility distribution networks, industrial loads, sensitive loads etc. are suffered. Power quality problem dealt here is Voltage Sag. To overcome the problem related to power quality, custom power devices are introduced. A number of power quality solutions are provided by custom power devices. At present a wide range of very flexible controllers, which capitalize on newly available power electronics components, are introduce for custom power applications. Power system capability can be increased by the use of Flexible AC Transmission System devices (FACTS) in transmission systems experiencing high power flows. The Dynamic Voltage Restorer (DVR) is the key series compensation devices that open up new opportunities to control the power on transmission systems in order to enhance their utilization, increase power transfer capability and to improve voltage profile. The fast response of this device makes it the efficient solution for improving power quality in distribution systems.

KEYWORDS: Voltage Sag, Power Quality, FACTS device, DVR, Voltage Profile, Series Compensation, IEEE.

I.INTRODUCTION

Power Quality determines the fitness of electrical power to consumer devices. Synchronization of the voltage frequency and phase allows electrical systems to function in their intended manner without significant loss of performance or life expectancy. IEEE Standard (IEEE1100) defines Power Quality as "the concept of powering and grounding sensitive electronic equipment in a manner suitable for the equipment". If the Power Quality of the network is good, then any loads connected to it will run satisfactory and efficiently. Power quality problems include a wide range of disturbance such as Voltage Sag, Voltage Swell, Frequency Disturbances, Harmonic Distortion, Impulse Transients, Electro Magnetic Interference and Electro Static Discharge. One of the most common power frequency disturbances is Voltage Sag. Voltage Sag is defined as a short reduction in voltage magnitude for duration of time, and it is the most important and commonly occurring Power Quality issue. The definition to characterize Voltage Swell in terms of duration and magnitude vary according to the authority. IEEE standard (IEEE1159, 1995) defines Voltage Sag an increase in the RMS voltage level to 110% - 180% of nominal, at the power frequency for durations of 0.5 cycles to 1 minute.. It is classified as a short duration voltage variation phenomena. Voltage swell is basically the opposite of Voltage Sag or Dip. A Single L-G (Line to Ground) fault can result in a Voltage Swell in the healthy phases. Due to large load changes and power line switching Voltage Swell occur.

Figure 1 Voltage Swell

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

II. PRINCIPLE OF DYNAMIC VOLTAGE RESTORER

DVR (Dynamic Voltage Restorer) is a static VAR device. It has wide applications in a variety of transmission and distribution systems. It is a series Compensation device, which protects sensitive electric load from Power Quality problems such as Voltage Sags, Voltage Swells, Voltage and Frequency unbalances and Harmonics distortion with the help of power electronic devices which are used in Voltage Source Converters (VSC). The first DVR was installed on 12.47 KV system located in Anderson, South Carolina, North America in 1996. DVR is small in size and it is a better power effective device as compared to other FACTs devices like DSTATCOM, SSSC and UPFC. DVR is the most effective and efficient custom power device because it has certain advantages like lower cost, smaller size and its fast response towards the disturbances. The capability of injection voltage by DVR system is 50% of nominal voltage. This allows DVRs to successfully provide protection against sags to 50% for durations of up to 0.1 seconds. Furthermore, most Voltage Sags rarely reach less than 50%. The Dynamic Voltage Restorer is also used to mitigate the damaging effects of Voltage Swells, voltage unbalance and other waveform distortions. DVR Works to mitigate any supply voltage disturbance, especially Voltage Sag, by inserting a voltage with the required magnitude and phase shift in order to restore the load voltage to its rated value.

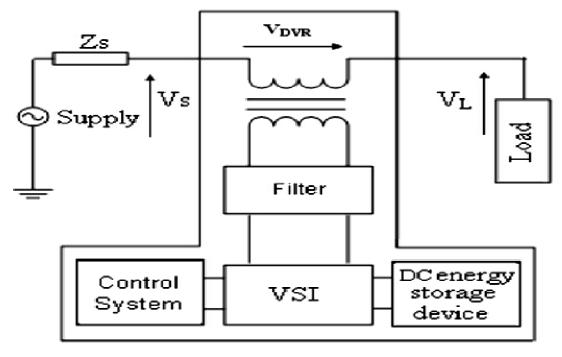


Figure 2 Basic Component of Dynamic Voltage Restorer

DVR consist of following components:

A. Voltage Source converter (VSC):

It is a power electronic system, which consists of switching devices and storage unit to generate sinusoidal voltage at any required frequency, magnitude, and phase angle. This could be a 3 phase–3 wire VSC or 3 phase–4 wire VSC. The latter permits the injection of zero–sequence voltages.

B. An Injection/Booster transformer:

In most DVR applications the DVR is equipped with injection transformers to ensure galvanic isolation and to simplify the converter topology and protection equipment. Three single phase transformers are connected in series with the distribution feeder to couple the VSC to the higher distribution voltage level.

Copyright to IJAREEIE DOI:10.15662/IJAREEIE.20156.0506135

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

C. Harmonic filter:

The filter is inserted to reduce the switching harmonics generated by the PWM VSC. The filters can be placed either on the high voltage side or the converter side of the boosting transformer. The advantages of the converter side filters are (a) the components are rated at lower voltage and (b) higher order harmonic currents do not flow through the transformer windings.

D. Storage Devices:

This is required to provide active power to the load during deep voltage sags. Lead-acid batteries, flywheel or Super Conducting Magnetic Energy Source (SMES) can be used as energy storage. s.

III. SIMULATION OF VOLTAGE SWELL FOR RL LOAD

A Voltage Swell is defined as a momentary increase in the root mean square (RMS) of Voltage ranging from 110% to 190% p.u., and a duration lasting for half a cycle to one minute. As shown in Figure 3.1, complete modal of DVR for removal of voltage swell is simulated and satisfactory results are achieved. In below simulation modal, Voltage Swell is generated with the help of three phase programmable voltage source which is shown in Figure 3.2. As explain, for removal of Voltage Sag basically following arrangement is required which are as follows:

- 1. Control strategy of DVR
- 2. Voltage source converter
- 3. Generation of gate pulse for VSC

In DVR modalHere filter circuit is also used because when the DVR is suddenly restored the voltage to nominal value to the transmission line of distribution system with the help of injecting transformer at the time of instance some disturbances are occur which lead to spike in a load voltage. To reduce that spikes L-C filter circuit is used.

Control strategy for Voltage Swell is based on abc to dq0 transformation i.e., Clarke Park transformation and dq0 to abc transformation i.e., inverse Clarke Park transformation, which is shown in below Figure 3.3. Simulation modal rating of DVR:

- 1. Supply Voltage = 3-Ø 1p.u. 50Hz
- 2. Voltage at Swell = $3-\emptyset$ 1.2p.u. 50Hz
- 3. Restored Voltage = 3-Ø 0.2p.u. 50Hz
- 4. R-L load:

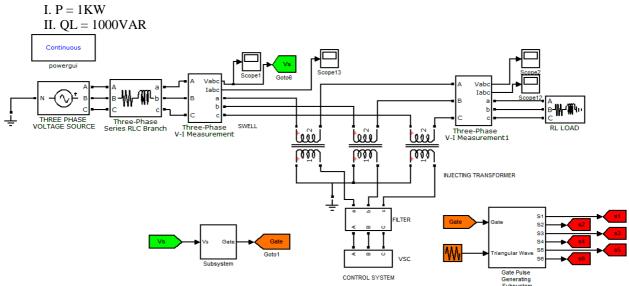


Figure 3.1Simulation model of DVR for Voltage Swell

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

As shown in below figure voltage swell is generated by the using of programmable voltage source. As shown, voltage swell is taking place in between 0.1sec to 0.2sec. At the time of voltage swell period, the voltage is increasing to 1.2p.u.

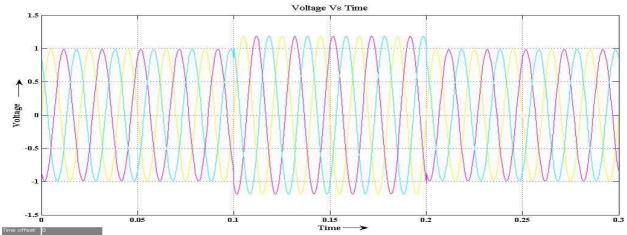


Figure 3.2 Wave form of Voltage Swell

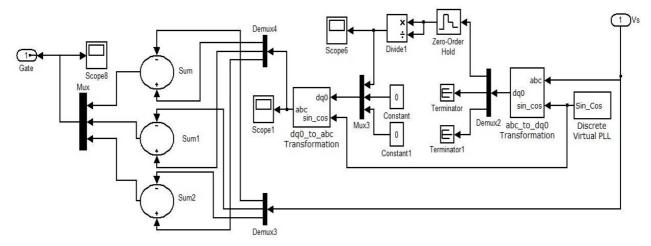


Figure 3.3 Control strategy of DVR

As explained earlier, firstly supply voltage (including voltage swell) is convert from abc to dq0 with the help abc to dq0 transformation. Here reference sine wave, which is vectorized inputs in terms sine wave is provided for abc to dq0 transformation. After this transformation zero order hold is used to hold at Voltage Swell in the waveform of one axis either it is direct axis or quadrature axis. After the zero order hold reference, voltage signal will multiply and divided by itself due to that 1p.u. signal will be generated in direct axis or quadrature axis. That 1p.u. signal will compare with the constant 1 with the help of product block to generate 1p.u. signal ineither direct or quadrature axis. To generate 1p.u. in AC system dq0 to abc transformation is performed. In this transformation two inputs are taken from zero i.e. terminator signal and remaining one input is taken from above generated 1p.u. Here dq0 to abc transformation is done with the help of dq0 to abc transformation in which stationary frame is converted into rotatory frame. Due to that sine wave with the magnitude 1p.u. is generated is three phase system. This 1p.u. reference sine wave is compared with the supply voltage due to that error is generated, which is required to be restored in the system. Magnitude of error in p.u. will be restored to the system with the help of injecting transformer.

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

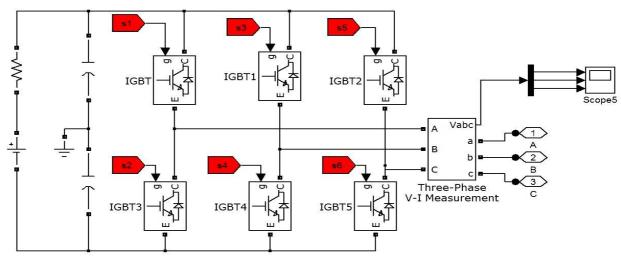


Figure 3.4 Voltage Source Converter Subsystem

Voltage source converter is made up of combination of six IGBTs. Here separate gate signal is provided for generation of voltage in p.u. which is required to be injected. Three arm of voltage source converter consisting of two IGBTs each. Each IGBT is operated for 60° of conduction period. Two IGBTs in one arm cannot be operated simultaneously. Here gate signal is provided by comparison of two signals one is error signal which is generated in the control strategy of DVR and other one triangular or carrier signal. Here comparison is performed with the help of Boolean expression. According to this comparison gate pulse is generated in square wave which is given to the irrespective IGBTs. Comparison is made in between carrier signal which is in triangular form and modulating signals (error signal) which in sinusoidal form. Hence this voltage source converter is also known as sinusoidal pulse width inverter (SPWM).

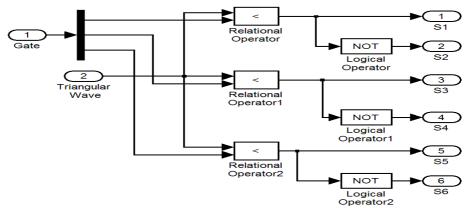


Figure 3.5 Gate pulse Controller

Gate pulse controlling mechanism is shown in above Figure 3.5. This gate pulse is fed to the irrespective IGBTs of voltage source converter. Due to that voltage source converter will generate error voltage in p.u. System, which is required to be restored in the system with the help of injecting transformer. After injection operation Voltage Swell will be mitigated.

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

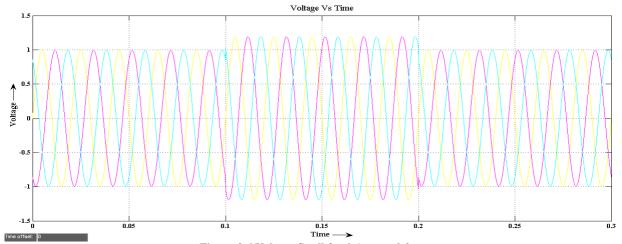


Figure 3.6 Voltage Swell for 0.1 sec to 0.2 sec

When Voltage Swell is taking place, supply voltage is affected as shown in above Figure 3.6 and magnitude of Voltage Swell is about 1.2p.u. for time period of about 0.1 to 0.2sec.

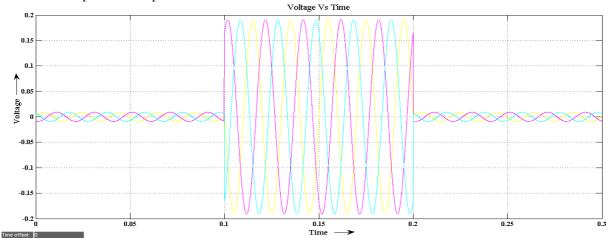


Figure 3.7 Required Injected Voltage after Voltage Swell

In accordance with error signal and reference signal the require voltage which is to be injected in the system is taken from voltage source converter through injection transformer shown in above Figure 3.7 and, In Figure 3.8 shows voltage result after removal of voltage swell.

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 6, June 2016

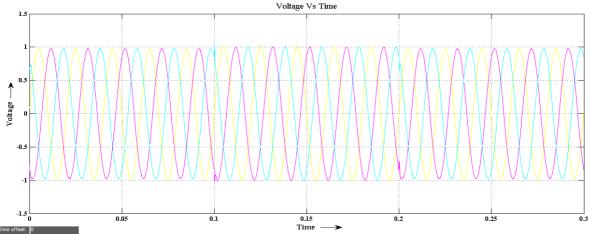


Figure 3.8 Voltages after Removal of Voltage Swell

This result is achieved by the above mention control strategy of DVR which shows smooth voltage profile of system.

VI.CONCLUSION

The modelling and simulation of a DVR using MATLAB/SIMULINK has been presented. A control system based on dq0 technique which isdetect error between source side of the DVR and its reference for Voltage Swell correction. The simulation result shows that the DVR performance is satisfactory for removal of voltage swell. From simulation results also show that the DVR compensates the voltage swell quickly and provides excellent voltage regulation. The DVR handles both balanced and unbalanced situations without any difficulties and injects the appropriate voltage component to correct quickly any deviation in the supply voltage to keep the load voltage balanced and constant at the nominal value.

REFERENCES

- [1] John GodskNielsen, "Design and control of a dynamic voltage restorer", Aalborg university, Denmark institute of energy technology, March, 2002.
- [2] C. Sankaran, "Power Quality" Handbook, Crc Press, 2002.
- [3] K. R. Padiyar, "Facts Controllers In Power Transmission And Distribution," New Age International Publishers Hand Book, 2007.
- [4] Dr. Vic Smith, "Voltage Sag Mitigation," Endeavour Energy Power Quality & Reliability Center, University Of Wollongong, Australia, August, 2012.
- [5] Sanjay Haribhai Chaudhary And Mr. Gaurav Gangil, "Mitigation Of Voltage Sag/Swell Using Dvr," Iosr Journal Of Electrical And Electronics Engineering (Iosrjeee) E-Issn: 2278-1676, P-Issn: 2320-3331, Volume 8, Issue 4, Pp 21-38 (Nov. Dec. 2013).
- [6] Ravilla Madhusudan And G.Ramamohan Rao, "Modeling And Simulation Of A Dvr For Power Quality Problems Voltage Sags And Swells," Ieee Student Member, International Conference On Advances In Engineering, Science And Management (Icaesm -2012) March 30, 31, 2012.
- [7] F. Ghezal; S. Hadjeri; M. Benghanem And S. Zidi, "Dynamic Voltage Restorer Behaviour" From Intelligent Control And Electrical Power Systems Laboratory Iceps Electrical Engineering Department DjillaliLiabes University, Sidi Bel Abbes, Algeria, March, 2014.
- [8] Rosli Omar, N.A. Rahim AndMarizanSulaiman, "Dynamic Voltage Restorer For Application Of Power Quality Improvement In Electrical Distribution System: An Overview," Australian Journal Of Basic And Applied Sciences, 5(12): 379-396, Issn 1991-8178, 2011.
- [9] H.P. Tiwari And Sunil Kumar Gupta, "Dynamic Voltage Restorer Against Voltage Sag," International Journal Of Innovation, Management And Technology, Vol. 1, No. 3, Issn: 2010-0248, August 2010