

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

Efficient Vedic Multiplication Oriented Pipeline Architecture with Booth/Baugh Wooley Comparisons

R.Dhivya, S. Maheshwari

PG Scholar, Department of Electronics and Communication, Mookambigai College of Engineering, Pudukottai, India

Assistant Professor, Department of Electronics and Communication, Mookambigai College of Engineering, Pudukottai,

India

ABSTRACT: The system contain a high speed low power digital multiplier by using advantage of Vedic multiplication algorithms with a very efficient leakage control technique called multiple channel CMOS (Mc CMOS) technology. We have designed 16 bit Vedic multiplier using McCMOS technology and used 65nm and 45nm node technology and comparative simulation results that indicates the performance of the circuit. Vedic mathematics is an ancient Indian mathematics is very useful for doing tedious and cumbersome mathematical calculation at a very fast rate. The Vedic Urdhva-Tiryakbhyam multiplier is approximately 10 times faster performance than the conventional multiplier architecture. Thorough simulations of 32 x 32 digital Vedic multiplier we are using McCMOS Technology which show the Power Delay Product (PDP) is reduced by approximately 75 % compared to the conventional multiplier design. The simulations have been carried out in cadence-spice simulator with 1V power supply. This technique will be very useful for designing low leakage high speed ALU unit. In the first phase of work we implemented the 32 bit Vedic multiplication operation and in the second phase we further extend our work into the comparisons of Booth and Baugh Wooley with Pipelined Architecture.

KEYWORDS: Vedic Multiplication Algorithm, Multi Channel CMOS Technology, Vedic Urdhva-Tiryakbhyam multiplier, Power Delay Product PDP).

I. INTRODUCTION

Reduction of area power dissipation and propagation delay is one of major area concern in modern VLSI Design. This system presents an efficient technique is used for multiplication of two binary numbers which reduce the average power, leakage power and delay. The proposed architecture is based on Urdhva-Tiryakbhyam Sutra of Vedic mathematics to increase the speed performance of binary multiplication which is based on 16 sutra (formula). This idea of designing the multiplier from Vedic mathematics is come because partial product and sum are generated in single step. An efficient Design technology for leakage control and McCMOS (Multiple- Channel CMOS) has been used for power and performance optimization of the Vedic Multiplier. The organization of this system is as follow: it contains MOSFET scaling and McCMOS technique, section 3 contains conventional binary multiplication algorithm and proposed algorithm of multiplication based on the Urdhva-Tiryakbhyam Sutra of Vedic mathematics has been described. Reduction of power dissipation and propagation delay is one of the main areas of concerns in modern VLSI designs. Keeping that in mind, an efficient technique for multiplication of two binary numbers with reduced average and leakage power and delay is presented in this system. The proposed architecture is based on the Urdhva-Tiryakbhyam Sutra of Vedic mathematics in order to enhance the speed of the binary multiplication [3, 8]. In the algorithmic and structural level a lot of other multiplication techniques have been developed for enhancing the efficiency of multiplier. But the idea of designing the multiplier from Vedic mathematics has emerged as in this technique the partial products and the sums are generated in only a single step. The use of Vedic Urdhva-Tiryakbhyam multiplier achieves approximately 10 times faster performance than the conventional multiplier architecture.

Furthermore, an efficient design technology for leakage control, McCMOS (multiple channel CMOS), has been used for the power and performance optimization of the Vedic multiplier. It is shown that by using this technique a much better performance is achieved than the conventional multiplier using CMOS architecture which will be quite helpful for high performance computing.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

MOSFET Scaling McCMOS Technique

In the MOS technology, the scaling parameters of the MOSFET's are critical. Such as channel length (Lc), Junction depth (Xj), channel doping (N), gate oxide thickness (Tox). The generalized equation for channel length

$$L_{min} = A [X_j t_{ox} (w_s + w_d)^2]^{1/3}$$

Where Lmin is the minimum channel length for which long channel sub-threshold behaviour will be observed, A is proportionality constant, Xj is junction depth, Tox is oxide thickness, Ws is the source depletion depth Wd is the drain depletion depth in a one dimensional abrupt junction formulation. Vds is the drain to source voltage, Vbi built in voltage of the junctions and VBS body to source reverse bias. The key parameter of the MOSFET scaling is described by Taur, Buchanan.

$$w_d = \sqrt{2}L_B \left[B(V_{DS} + V_{bi} + V_{BS})\right]^{1/2}$$

Where L_B is the bulk Debye length given by

 $L_B = [\xi_s / Bq N_A]^{1/2}$

Where B = $(kT/q)^{-1}$

Fig.1 Inverter Using the 45nm McCMOS Technique

In deep submicron CMOS design, non-minimum length of transistor offer achieving excellent leakage control without the disadvantages of other known leakage control techniques. By using McCMOS techniques initial analysis of circuits

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

indicates that the leakage reduction by a factor of at least 150 with only small increase in circuit area and switched capacitance. Leakage current can be controlled by increasing the channel length. Reducing the channel length would decrease the threshold voltage which seems to be a great challenge in designing small devices. In non- critical path we will increase the channel length of at least one transistor (prefer one which have high probability of turn off) in each possible current path between Vdd and ground. In critical path apply the same technique but increase transistor width as necessary to maintain performance. The main advantage of McCMOS technique is its simplicity. One has to just increase the channel length very merely of the selected transistors which can be easily accomplished by existing CAD tools and single Vth Processor, another advantage of McCMOS technique is leakage control can be possible for both active and idle mode of circuit operation. A simple example of an inverter is shown in Fig. 1. Where 45 nm McCMOS technique has been used for the power optimization of the circuit.

The key parameters are power supply and threshold voltage, short-channel effect, gate oxide, current carrying capability and leakage current limit. In deep submicron CMOS design, non-minimum length transistors offer the possibility of achieving excellent leakage control without the disadvantages of other known leakage control techniques. Initial analysis of the circuits using McCMOS technique indicates that one can expect leakage reduction by a factor of at least 150 with only modest increase in circuit area and switched capacitance. Controlling the leakage current can be done by increasing the channel length that has been proposed in this paper. Doubling the channel length would give us a leakage saving ratio in the order of 250.Now reducing the effective channel length would decrease the threshold voltage which seems to be a great challenge in designing small devices.

In the noncritical path of a circuit we should increase the channel length of at least one transistor (preferably one with a high probability of being turned off) in each possible current path between Vdd and ground. In critical paths, apply the same technique but increase transistor width as necessary to maintain performance.

The main advantage of McCMOS technique than other leakage control circuits is its simplicity. One has to just increase the channel length very merely of the selected transistors which can be easily accomplished by existing CAD tools and single VTH processes. In other techniques other processing steps may be required. Another very significant advantage of McCMOS technique is that leakage control can be possible for both active and idle mode of circuit operation. A simple example of an inverter is shown in Fig. 1. Where 45 nm McCMOS technique has been used for the power optimization of the circuit. As seen from the circuit we have used non minimum length of selected transistor for controlling the leakage power.

Conventional Multiplier Algorithm

The multiplication algorithm for an 8×8 multiplication process is shown in Fig. 2. Multiplicands are denoted by ai and multipliers are denoted by bi, where i=0 to 7 for an eight bit multiplier. Pi are the partial products, where i=0, 1, ... 63. These partial products are added by using half adders and full adders. The ovals containing three bits are the full adders and those containing two bits are the half adders. After the addition, the sums are denoted by Si and carries are denoted by Ci, where 'i' denotes the column number of the added bits. There are sixteen columns that started with 0 from the right side. The bits that are not in the oval are forwarded to the next stage without any Boolean operation; these bits are shown in bold letters.

This process continues until we get two rows of bits. After four stage of addition we get two rows where nine bit parallel addition is required. Parallel addition is done by using one five bit parallel adder and one four bit parallel adder. In the entire addition process, carry propagation addition is done in two places. In these two places two bit parallel adder [5, 9] can be employed but as delay is not important at this stage so carry propagation addition is done to reduce area and power.

ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

Fig.2 Conventional Multiplier Algorithm

The 8×8 bit multiplier is designed using parallel multiplication architecture, as shown in Fig. 3. There are three main blocks (i) Partial product generator (ii) Wallace tree adder array [4] (iii) CLA adder. The first block is designed using TG AND gates only. The second and third blocks, which are designed with TG full adder and hybrid CLA adder (designed with TG and CMOS), are used to minimize the critical path gate stages.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issu	ue 2, Feb	ruary 2	016	
Multiplicand	X3	X2	X1	XD
Multiplier	Y3	Y2	Υ1	YO
P0=X0 × Y0		:	::	I
P1=X1×Y0+X0×Y1		:	::	\times
P2=X2×Y0+X0×Y2+2	X1 × Y1	:	>	K
P3=X3×Y0+X0×Y3+)	C2 × Y1 + X	L × Y2	\gg	\leq
P4=X3×Y1+X1×Y3+	X2 × Y2		\times	
P5=X3×Y2+X2×Y3		2	< :	•••
P6=X3 × Y3		I	::	•••

Figure 3 Urdhva-Tiryakbhyam 4×4 multiplication procedures.

II. PROBLEM STATEMENT

In sub-micron CMOS design, non-minimum length transistors offer the possibility of achieving excellent leakage control without the disadvantages of other known leakage control techniques. Preliminary analyses indicate that one can expect leakage reduction by a factor of at least 100 (and possibly orders of magnitude higher) with only modest increases in circuit area and switched capacitance. This paper briefly reviews related leakage control techniques, describes the McCMOS technique, and presents: simulation results that are indicative of the performance of the technique.

A scalable architecture for pipelined and iterative Wallace tree multipliers is presented. For netlist-only multipliers, minimal latency and number of pipeline stages are achieved through a decay-driven design scheme. The architecture can be modified to a tree-of-Wallace-trees structure for regular layout, at the expense of latency. The achievable minimal cycle time equals the delay through two full adder cells, plus the setup time and delay through a register. The elemental Wallace trees in this architecture can also be used in iterative structures that provide a variety of delay/gate-count tradeoffs.

The main aim of the project is to improve the speed of the complex multiplier by using vedic mathematics. This 'Vedic Mathematics ' is the name given to the ancient system of mathematics, or, to be precise, a unique technique of calculations based on simple rules and principles, with which any mathematical problem can done with the help of arithmetic, algebra, geometry or trigonometry can be solved. Traditionally complex multiplier provides less speed only, because it does not use Vedic Mathematics concept. By using 'Vedic Mathematics ' concept we can skip carry propagation delay. The system is based on 16 Vedic sutras, in which we are using one kind of vedic sutra actually word-formulae describing natural ways of solving a whole range of mathematical problems. The main design features of the proposed system are the reconfigurability and flexibility. The proposed system is design using VHDL or Verilog HDL and is implemented through Xilinx ISE 9.1i navigator or modelsim 6.0 softwares.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

A complementary all-N-transistor (CANT) comprising the ANT logic and a novel inverted ANT logic are proposed in this paper. The threshold voltage of the transistors in the ANT logicpsilas N-block is variable depending upon the operation of the entire logic block. In the evaluation phase, the bulk voltage of the transistors in the N-block is raised to VDD - Vthn such that the drain current therein is increased to enhance operation speed. In the pre-charge phase, the bulk voltage of those transistors in the N-block is reduced to its normal voltage level such that the sub threshold leakage current is dropped to reduce power consumption. By utilizing such a variable bulk voltage scheme in the CANT, a 32-bit CLA is designed to justify the low power and high speed performance. The power dissipation is 143 mW at 5.4 GHz clock rate given the worst PVT (SS, 1.08 V, 75degC) condition.

Starting with a brief review on 0.1-µm (100 nm) CMOS status, this paper addresses the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations. Among the issues discussed are: lithography, power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays. The last part of the paper discusses several alternative or unconventional device structures, including silicon-on-insulator (SOI), SiGe MOSFET's, low-temperature CMOS, and double-gate MOSFET's, which may lead to the outermost limits of silicon scaling.

III. APPROACH

Proposed Algorithm using Ancient Mathematical Approaches Urdhva-Tiryakbhyam

The contribution of ancient Indian mathematics in the world history of mathematics has been immense. Vedic mathematics is one such a system of ancient Indian mathematics, which enables different mathematical operations to be carried out at a very brisk rate. It uses various formulas used for fast calculations. "Urdhva-Tiryakbhyam" Sutra is such a general formula applicable to all cases of multiplication. The meaning of this sutra is "vertically and crosswise". Figure 4 represents the general multiplication procedure of 4×4 multiplier using the above sutra. This figure depicts the generation of different partial products and addition of them to get the final multiplier output.X0*Y0 is a partial product which is the 1st bit of the multiplier output, P0. In the next step X1*Y0 & X0*Y1 are two partial products and by adding them we get P1. In this way we get P2, P3... P6 and consequently the final 7bit output of the 4×4 multiplier. The multiplication algorithm for an 8×8 multiplier. The bits of multiplicands are denoted by xi and multipliers are denoted by yi where i=0,1,...7 for a 8 bit multiplier. The bits of multiplicand and multiplier are multiplied vertically and crosswise stated in the Urdhva-Tiryakbhyam sutra to generate the partial products. These partial products are added using half and full adders. Thus the partial products and sums are generated in only a single step. The output of the adders are Sm where m=0, 1,.....14 & Cn n=0, 1,....23. Generation of sums of partial products and carrys has been shown in the above Fig. 5. and subsequent equations below.

$$S0 = x0 \times y0 \quad (carry C0 = 0) \tag{1}$$

$$S1 = x1 \times y0 + x0 \times y1 (carry C1)$$
(2)

$$S2 = x2 \times y0 + x0 \times y2 + x1 \times y1 \text{ (carry C2)}$$
(3)

	Multip Multip	licand lier	x7 y7	xố yố	x5 y5	x4 y4	x3 y3	x2 y2	x1 y1	x y	0			
S14	S13	S12	S11	S10	S9	S8	\$ 7	S6	S 5	S4	\$3	S2	S1	S0
	C23	C22	C20 C21	C18 C19	C16 C17	C14 C15	C11 C12 C13	C9 C10	C7 CS	C5 C6	C3 C4	C2	C1	CO

Figure 4 Generation of sums of partial products & carrys.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

In the first phase of work we implemented the 32 bit Vedic multiplication operation and in the second phase we further extend our work into the comparisons of Booth and Baugh Wooley with Pipelined Architecture. There are a wide range of multiplication techniques; the one perhaps most familiar to the majority of people is the classic long multiplication algorithm, e.g.

23958233 5830 × 00000000 (= 23,958,233 × 0) 71874699 (= 23,958,233 × 30) 191665864 (= 23,958,233 × 800) 119791165 (= 23,958,233 × 5,000) 139676498390 (= 139,676,498,390)

While this algorithm works for any pair of numbers, it is long winded, requires many intermediate stages, and requires you to record the results of each of the intermediate stages so you can sum them at the end to produce the final answer. However, when the numbers to be multiplied fall into certain categories, short-cuts can be used to avoid much of the work involved in long multiplication. There are many of these 'special cases' some of them allow seemingly difficult multiplications to be completed mentally, literally allowing you to just write down the answer. To multiply two-digit numbers the normal way, you would have to multiply the ones place by the other number then multiply again by the tens place, but there is another way. Vedic math can help you solve what would be a hard problem, easily. There are sixteen different "sayings" in Vedic math, but here is just one: "Vertically and horizontally."

The proposed architecture is based on Urdhva-Tiryakbhyam Sutra of Vedic mathematics to increase the speed performance of binary multiplication which is based on 16 sutra (formula). This idea of designing the multiplier from Vedic mathematics is come because partial product and sum are generated in single step. An efficient Design technology for leakage control and McCMOS (Multiple- Channel CMOS) has been used for power and performance optimization of the Vedic Multiplier. The organization of this system is as follow: it contains MOSFET scaling and McCMOS technique, section 3 contains conventional binary multiplication algorithm and proposed algorithm of multiplication based on the Urdhva-Tiryakbhyam Sutra of Vedic mathematics has been described.

Reduction of power dissipation and propagation delay is one of the main area of concerns in modern VLSI designs. Keeping that in mind, an efficient technique for multiplication of two binary numbers with reduced average and leakage power and delay is presented in this paper. The proposed architecture is based on the Urdhva-Tiryakbhyam Sutra of Vedic mathematics in order to enhance the speed of the binary multiplication [3, 8]. In the algorithmic and structural level a lot of other multiplication techniques have been developed for enhancing the efficiency of multiplier. But the idea of designing the multiplier from Vedic mathematics has emerged as in this technique the partial products and the sums are generated in only a single step. The use of Vedic Urdhva-Tiryakbhyam multiplier achieves approximately 10 times faster performance than the conventional multiplier architecture.

Furthermore, an efficient design technology for leakage control, McCMOS (multiple channel CMOS), has been used for the power and performance optimization of the Vedic multiplier. It is shown that by using this technique a much better performance is achieved than the conventional multiplier using CMOS architecture which will be quite helpful for high performance computing.

V. SIMULATION RESULTS

The simulations have been performed by using 45 nm, 65 nm, 90 nm &130 nmMOS technique with 1 V power supply using Cadence simulator. For the evaluation of the performance of the circuit, we have shown the simulation results of conventional multiplier and Vedic Urdhva-Tiryakbhyam multiplier and the same has been shown using the McCMOS technique. As shown the application of Vedic mathematics for multiplication cuts down the hardware requirements and increases the performance of the circuit. Using the McCMOS technique, the Vedic multiplier gives approximately 52–72 % less PDP compared to the conventional architecture of multiplication using McCMOS. A comparative study of average power, delay & PDP of 8×8 conventional and Urdhva-Tiryakbhyam multiplier using McCMOS technique with 45 nm,65 nm,90 nm,130 nm node technologies are shown in Figs. 8, 9 and 10. Tables 1 and 2 show the values of simulation results. In table 1 the comparative performance has been shown for a conventional and Urdhva-Tiryakbhyam

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

multiplier. Table 2 encompasses the experimental results of McCMOS conventional and McCMOS Urdhva-Tiryakbhyam multiplier. It can be clearly seen from the tables that with the use of Urdhva-Tiryakbhyam rule and McCMOS technique the performance of the multiplier can be considerably improved.

Urdhva-Tiryambakam

Multiplication has some limits and to overcome these limitations a new approach has been describe and designed a Vedic multiplier with proposed unique addition structure, which is used to perform addition of partially generated products. To meet main concern "area" and "speed" we have came up with a need particular high speed ALU, the speed of ALU greatly depends upon the speed of multiplication unit used in it. There are numerous multiplication techniques exist now a days at algorithmic and structural level. It is been shown that Vedic multiplication is the fastest multiplication method but there are some other multiplication techniques which are batter then vedic multiplication in terms of chip area. This Proposed work is a unique architecture of 16 bit vedic with combination of 4 bit vedic multiplications and that 4 bit multiplication is been have developed with a unique addition structure. The observed results are been very good and optimized. Later on ALU module is been developed. The tool used for the designing is Xilinx XST and the target platform for validation is Vertex family vertex-4 FPGA, the preferred language is VHDL.

Urdhva-Tiryambakam Sutra

The proposed Vedic multiplier is based on the "Urdhva Tiryambakam" sutra. These formulas are mainly used for multiplication of two decimal numbers [6]. In present paper we apply this algorithm on binary numbers. This multiplication formula can be apply to all cases of multiplication .The term "Urdhva Tiryambakam" originated from two Sanskrit words Urdhva and Tiryambakam which means "Vertically" and "Crosswise" respectively[5]. This method is based on the concept in which all partial products are generated concurrently. This algorithm can be applicable for n x n bit number. All the partial products and their sums are parallely calculated; the multiplier does not dependents on the processors clock frequency. It can be easily layout in microprocessors due to its regular structure, and designers can easily identify these problems to avoid device failures. Processing power of multiplier can be easily enhanced by increasing width of the input and output data bus. It can be easily layout in silicon chip due to its regular structure. The multiplier based on "Urdhva Tiryambakam" sutra has the advantage that in comparison to other multipliers gate delay and area increases very slowly as the number of bits increases. So this multiplier is space, time and power efficient.

Fig.8 Multiplication of two 4 bit numbers using Urdhva Tiryambakam method

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

Proposed 16x16 bit Arithmetic Unit is given in the figure 2.

Fig.9: Arithmetic Logic Unit Module

Here the A and B are the two 16 bit inputs of proposed Arithmetic Unit. And other portion of the design includes Adder, Subtractor, Multiplier, and ALU. Product and Accumulated product are 32 bit output while differences, S are 16 bit output. Proposed work did not focus on the designing of the adder and subtractor circuits as these are not consider modules which consumes large amount of area and power in ALU. But after detailed study it is been found that normally, carry ripple adders can be used when it required to meet timing constraints because they are easy to build and compact.

<u>m</u> Float (M.63c) -	Default.w	cfg*]								
📆 File Edit Vi	ew Sim	ulation	Window	Layout	Help				0	
	XC) Q X	0	CI M		î Ø	68	16	PK	?
æ				UNION CONTRACTOR						
P Name	Value	0 ns		200 ns	l Lana - savel	400 ns		600 ns		800
15:0	8888	0000	8888	a00b	(89ab)	1234	0123	1cc7	8888	(aC
🥂 🔊 🏹 y(15:0	1234	0000	1234	0123	1245	8888	a007	abcd	1234	0
🙆 🕨 😽 sel[2:0	0	0	χ	5			7			6
🗿 🕨 🥳 z1[15:	9abc	0000	4ba0	ec81	2117	7654	9ee4	8f06	9abc	al
🛧 🕨 🏹 z2[15:	0000	0000	09b5	00b5	09d3					
🛃 🔓 fay	0									

Fig.13 simulation results of ALU

The results are been produced after RTL entry in Xilinx EDA tool. Simulation is done on Xilinx ISE and results are been verified correctly.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

VI. SAMPLE SCREENSHOT

File Edit View Project Source Process Window	Help	» - ē
〕≤∎Ø₽¥≣≥₽®■	■ ■% % ∦ % ■ 8 2 2 9	
····································	<pre>(rd) podule and grate(a,b,z); 2 input a; 3 input b; 4 output b; 5 assign rea (b; 6 endmodule</pre>	
Boddé View Support View Support View Support View Support View Design View Design View Design View Design View Design View Support Suport Support		
Configure Device (MMPACT)	Vate bre (1) and parace	2
Launching Application for proces	s "Configure Device (iMPACT)".	
0		/
Console Find in Files Warrings	<u>\Errors</u>	

New Project Wizard - Crea	te New Project	
Enter a Name and Location for the	Project	
Project Name:	Project Location	
or_gate	C:\Shilpa\or_gate\or_gate	
Calact the Tune of Top Lavel Source	to for the Project	
Top-Level Source Type:		
HDL		~
MoreInfo	K Back	Next > Cancel

(An ISO 3297: 2007 Certified Organization)

BMM File IP [Coregen & Architecture Wizard] MEM File Schematic Implementation Constraints File File name: Test Bench WaveForm o_gate_tb User Document Location: Verilog Test Fisture C:\Shilpa\or_gate\or_gate VHDL Module C:\Shilpa\or_gate\or_gate VHDL Library VHDL Test Bench VHDL Test Bench ✓ Add to project More Info < Back Next > New Source Wizard - Associate Source Cancel Select a source with which to associate the new source. o_gate	BMM File IP (Coregen & Architecture Wizard) MEM File Schematic Implementation Constraints File State Diagram Test Bench WaveForm User Document Verilog Module Verilog Test Fixture VHDL Library VHDL Package VHDL Test Bench More Info New Source Wizard - Associate Source Select a source with which to associate the new source.			
Verlog Module Location: Verlog Module C:\Shilpa\or_gate\or_gate VHDL Module C:\Shilpa\or_gate\or_gate VHDL Library VHDL Package VHDL Test Bench Image: Add to project More Info < Back Next > New Source Wizard - Associate Source Image: Cource Source Image: Cource Source Veloc a source with which to associate the new source. Source Source Image: Cource Source	Verlog Module Locatio Verlog Module C:Shi VHDL Library VHDL Package VHDL Test Bench VHDL Test Bench VHDL Test Wizar d - Associate Source Select a source with which to associate the new source. Select a source with which to associate the new source.	ne: _tb		
Add to project More Info	More Info New Source Wizard - Associate Source ielect a source with which to associate the new source. _gate	n: pa\or_gate\or_ga	ike	
New Source Wizard - Associate Source	New Source Wizard - Associate Source ielect a source with which to associate the new source.	d to project < Back	Next >	Cancel
select a source with which to associate the new source.	Select a source with which to associate the new source.			

Vol. 5, Issue 2, February 2016

VII. CONCLUSION

In this system we have designed and simulated a 32 bit Vedic Urdhva-Tiryak bhyam multiplier using McCMOS technique. Though using the Urdhva-Tiryakbhyam technique the average power increases a bit but the propagation delay of the circuit reduces in a large proportion to cause a considerable amount of reduction in PDP. As seen from table 1, the PDP reduces upto 80 % in Urdhva-Tiryakbhyam multiplier compared to conventional multiplier algorithm. Moreover, the use of 130 nm, 90 nm, 65 nm, 45 nm MOS structures makes the circuit more power efficient and provides high performance in ultra low power applications. The McCMOS Urdhva-Tiryakbhyam multiplier gives about 73 %–90 % less amount of delay compared to the McCMOS conventional multiplier and the overall PDP is reduced considerably. We have designed the circuit keeping our concentration primarily on reduction of propagation delay, dynamic average and leakage power consumption and PDP and it has been successfully shown that by using our proposed algorithm.

(An ISO 3297: 2007 Certified Organization)

Vol. 5, Issue 2, February 2016

REFERENCES

- Johnson, M., & Roy, K. (1997). "Subthreshold Leakage Control by Multiple Channel Length CMOS (McCMOS)" Electrical and Computer Engineering ECE Technical Reports Purdue Libraries. http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1079&context=ecetr. Accessed 18 Apr 2010.
- [2] Jagadguru, S. S., Bharati, K., & Tirthaji, M. (2001). Vedic Mathematics. Delhi: Motilal Banarasidass Publishers Pvt Ltd.
- [3] Mehta, P., & Gwalior, D. (2009). Conventional versus Vedic mathematical method for hardware implementation of a multiplier. IEEE International Conference on advances in Computing, Control and Telecommunication Technologies. doi:10.1109/ACT.2009.162.
- [4] Pang, K. F. (1990). Computer Design: "Architectures for pipelined Wallace tree multiplier-accumulators" VLSI in Computers and Processors, ICCD. Proceedings, IEEE International Conference. doi:10.1109/ICCD.1990.130217.
- [5] Saha Prabir, K., Banerjee, A., & Dandapat, A. (2009). High speed low power complex multiplier design using parallal adders and subtractors. International Journal on Electronic and Electrical Engineering (ITJEE), 07(11), 38–46.
- [6] Sung, G-N, Juan, C-Y., &Wang, C-C. "A 32-Bit Carry Lookahead Adder Design Using Complementary All-N-Transistor Logic" Electronics, Circuits and Systems, 2008. ICECS2008. 15th IEEE International Conference. doi: 10.1109/ICECS.2008.4674951.
- [7] 7. Taur, Y., Buchanan, D. A., Chen, W., Frank, D.J., Ismail, K.E., & Lo, S-H., et al. (1997). "CMOS Scaling into the Nanometer Regime". Proceedings of the IEEE, 85(4), 486–504.